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Executive Summary

The Magellan Project was funded by the American Recovery and Reinvestment Act to investigate the
applicability of cloud computing for the Department of Energy’s Office of Science (DOE-SC). Efforts range
from evaluating what applications work well on today’s commercial cloud offerings to seeing how jobs can
be distributed across multiple DOE clouds to exploring emerging programming models like MapReduce.
NERSC has adopted a data driven approach in understanding the motivations and requirements of scientific
users and analyzing application performance in cloud like environments. NERSC has deployed a highly
flexible testbed to support this research, allowing NERSC to explore a range of hardware and software
configurations to provide insight into how these design points impact application performance, usability, and
power efficiency.

This report covers the progress for the Magellan Project at NERSC since it began in September 2009
and focuses on the research aspects of the project. The initial half of the project was centered on procuring,
installing, and deploying the hardware for the testbed. This work was completed in March 2010. The project
has spent 57% of $16,384,000 budget since June 30 which is inline with the project plan.

The Magellan testbed at NERSC includes computational, storage, and networking infrastructure. The
Cluster consists of a 720 node cluster each with dual Intel Nehalem quad-core processors, 24 GB of RAM, and
a QDR InfiniBand NIC. The deployed storage includes over a petabyte of disk storage, as well as archival
storage. The system also includes network server nodes that will be connected to the 100Gb network
planned for deployment by the DOE-SC funded Advanced Networking Initiative. The cluster uses xCAT
and the Moab Adaptive Computing Suite to provide advanced provisioning and scheduling capabilities.
This software combination will allow NERSC to explore different models of providing access to computing
resources including traditional batch scheduling, dynamic image provisioning and virtual private clusters.

While the testbed has been in operation for only a few months, NERSC has made significant progress
in addressing many of the research questions. Early on NERSC solicited information from users expressing
an interest in Magellan. The questionnaire included questions both about motivations for using Cloud
computing as well as details about their application and data requirements. The results of the survey
indicate that many of the users are interested in Cloud computing as a way to access additional computing
cycles. However, users are also drawn to the ability to customize and share software environments for their
applications. The survey also highlighted that users are still looking for capabilities like parallel file systems
and archival storage found in centers like NERSC. The feedback from this survey guides the project in
deciding what capabilities users are interested in exploring.

NERSC has also conducted several benchmarking activities to study how applications perform in cloud
environments versus traditional batch clusters. The benchmarks include the NERSC6 benchmarks, is repre-
sentative of the workloads observed amongst NERSC users, and the HPCC benchmark suite. These bench-
marks were run on NERSC clusters and supercomputers, virtual machines on Magellan, and a commercial
cloud system. The results of these benchmarks highlight the importance of low-latency, high-bandwidth
interconnects. Applications performed 2x to 50x slower on the commodity networks running on virtual
machines. Applications with the most communications and synchronization experienced the most signifi-
cant impact. On the other hand, NERSC confirmed that serial, high-throuphput oriented applications like
BLAST performed well on both commercial clouds and in frameworks like Hadoop and Microsoft’s Azure.

The Magellan Project has already made an impact for users. A facility problem at the Joint Genome
Institute led to a pressing need for backup computing hardware to maintain their production sequencing
operations. NERSC in partnership with ESNet was able to provision Magellan hardware in a Hardware
as a Service (HaaS) model to help them meet their demands. This experience demonstrated the potential
for Cloud computing but also highlights areas where more integration is required. NERSC users also have
access to the Magellan testbed to run in a standard batch cluster environment. The users have used nearly
13 million core hours since the system completed acceptance in March. Users from all the DOE-SC offices
have taken advantage of the system.
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NERSC’s experience to date on using Magellan and Cloud oriented technologies have exposed several
areas that require further attention. Challenges include: securing and protecting cloud resources both from
inside and outside threats; providing access to critical shared resource like global file systems; leveraging high-
performance interconnects like InfiniBand in virtualized environments; and porting scientific applications to
cloud environments and cloud programming models. Addressing these challenges will require a combination
of technologies, system integration, and policy.

During the remainder of the Magellan Project, NERSC will continue to address research questions and
explore approaches to addressing some of the challenges. The efforts to date clearly show both the promise
of cloud computing, as well as the areas that require more effort and investment.
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Chapter 1

Project Objectives

The Magellan Project was funded by the American Recovery and Reinvestment Act to investigate the appli-
cability of cloud computing for the Department of Energy’s Office of Science (DOE-SC). Cloud computing
has recently emerged as a new model for providing computing infrastructure and services. While cloud
computing has similarities with other distributed computing models such as Grid and Utility computing,
cloud computing has leveraged virtualization and a pay-as-you-go business model that has made it attrac-
tive to the enterprise computing space. Cloud computing has been particularly successful with customers
lacking significant IT infrastructure or customers that have quickly outgrown their existing capacity. This
new model has also attracted the interest of the scientific computing community. Many communities are
rapidly outgrowing their own infrastructure or periodically require access to surge resources. In many cases
deploying new hardware requires significant additional space, facilities investment and trained personnel. In
some cases, expanding facilities is not feasible. Cloud computing can potentially help address these require-
ments. The Magellan Project at NERSC is focused on understanding the unique requirements of DOE SC
applications and the role cloud computing can play in scientific communities.

One challenge with exploiting cloud computing for science is that the scientific community has needs
that can be significantly different from typical enterprise customers. Applications often run in a tightly
coupled manner at scales greater than most enterprise applications require. This often leads to bandwidth
and latency requirements that are more demanding than most cloud customers. Scientific applications also
typically require access to large amounts of data including large volumes of historical data. This can lead
to large startup cost and data storage cost. Magellan at NERSC will analyze these requirements using an
advanced testbed, a flexible software stack, and performing a range of data gathering efforts.

In order to assess the effectiveness of cloud computing for DOE-SC, the Magellan project will address
several key questions.

1. What part of the DOE SC workload can be supported within an existing commercial cloud model, and
which cloud model is appropriate for which applications: Hardware as a Service (HaaS), i.e., operating
system virtualization as in Amazon’s EC2 cloud; Parallel Frameworks, e.g., Google’s MapReduce cloud;
Software as a Service, as in Microsoft’s cloud service; or Data as a Service, as in Amazon’s S3 cloud?

2. What is the efficiency of computing in the cloud and how does that depend on workload characteristics
such as communication volume, message size, synchronization frequency, I/O bandwidth requirements,
and programming models? How do potential underlying hardware options compare to one another and
to traditional high-bandwidth, low-latency clusters?

3. How cost-effective are commercial clouds relative to privately owned clouds for various workloads?
How cost-effective (in terms of total cost of ownership) are clouds relative to DOE’s current ad hoc
approach to mid-range computing?
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4. Are there changes to commercial clouds that would make their offerings more appropriate for mid-range
scientific computing? Are commercial clouds a viable option when it comes to addressing sharp spikes
in the workload of scientific applications?

Another objective of the Magellan Project is to explore how new models of distributed computing may be
applied to scientific computing. These new models include evaluating existing frameworks like MapReduce
and Software as a Service, and answering the following questions.

1. Can a single DOE front-end to a cloud provide a convenient mechanism for accessing both private
DOE clouds and commercial clouds? How would jobs need to be packaged and identified to make them
location-independent?

2. Can some popular mid-range applications be provided as an application service within the cloud,
thereby making scientists even more productive than they are today?

3. Can multiple DOE clouds (at NERSC and ALCF) provide high availability by allowing job queues at
one site to be redirected to another due to planned or unplanned outages? Can they also provide load
balancing across the two clouds?

4. Can multiple DOE clouds run at different security levels and allow jobs with different security require-
ments to exist within a single logical cloud?

In order to successfully address the research agenda of the Magellan Project, NERSC has adopted a
data-driven approach and deployed a testbed that is flexible. NERSC is focusing on understanding the
requirements of scientific users by soliciting data via a detailed questionnaire. This data-driven approach
is continued in the benchmarking and performance analysis efforts. Future efforts will include assessing the
energy efficiency and cost effectiveness of cloud computing for scientific applications. Both the hardware
architecture and software stack have been chosen to allow NERSC to explore a variety of models with the
testbed. For example, the system provides both a high-bandwidth, low-latency quad-data rate InfiniBand
network as well as a commodity Gigabit Ethernet network. While InfiniBand may be unusual in a typical
commercial cloud offering, it allows NERSC to investigate a range of performance points and measure the
impact on application performance.
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Chapter 2

Background

The term “cloud computing” covers a range of delivery and service models. The common characteristic
of these service models is an emphasis on pay-as-you-go and elasticity, the ability to quickly expand and
collapse the utilized service as demand requires. Thus new approaches to distributed computing and data
analysis have also emerged in conjunction with the growth of cloud computing. These include models like
MapReduce and scalable key-value stores like Big Table [4].

Cloud computing technologies and service models are attractive to scientific computing users due to the
ability to get on-demand access to resources to replace or supplement existing systems, as well as the ability
to control software environment. Scientific computing users and resource providers servicing these users are
considering the impact of these models and technologies. In this section, we briefly describe the cloud service
models and technologies to provide some foundation for the discussion.

2.1 Service Models

Cloud offerings are typically categorized as Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Each of these models can play a role in scientific computing.

The distinction between the service models is based on the layer at which the service is abstracted to the
end user (e.g., hardware, system software, etc.). The end user then has complete control over the software
stack above the abstracted level. Thus in IaaS a virtual machine or hardware is provided to the end user and
the user then controls the operating system and the entire software stack. We describe each of these service
models and visit existing examples in the commercial cloud space to understand their characteristics.

2.1.1 Infrastructure as a Service

In the Infrastructure as a Service provisioning model, an organization outsources equipment including storage,
hardware, servers and networking components. The service provider owns the equipment and is responsible
for housing, running and maintaining it. In the commercial space, the client typically pays on a per-use basis
for use of the equipment.

Amazon Web Services is the most widely used IaaS cloud computing platform today. Amazon provides
a number of different levels of computational power for different pricing. The primary methods for data
storage in Amazon EC2 are S3 and Elastic Block Storage (EBS). S3 is a highly scalable key-based storage
system that transparently handles fault tolerance and data integreity. EBS provides a virtual storage device
that can be associated with an Elastic Computing instance. S3 charges for space used per month, the volume
of data transferred, and the number of metadata operations (in allotments of 1000). EBS charges for data
stored per month. For both S3 and EBS, there is no charge for data transferred to and from EC2 within a
domain (e.g., the U.S. or Europe).
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Eucalyptus is open source software that provides a private cloud IaaS service. Eucalyptus services
include a cloud controller, a cluster controller, and node controllers for managing the virtual machines
(VMs). The interface to launch and manage VMs is compatible with Amazon EC2. In addition, Walrus and
the storage controller provide persistent storage and block store services that are interface compatible with
Amazon S3 and Elastic Block Storage.

In Magellan, in conjunction with other synergistic activities we use Amazon EC2 as the commercial cloud
platform to understand and compare an existing cloud platform. We use Eucalyptus to set up a private
cloud IaaS platform on Magellan hardware for detailed experimentation on providing cloud environments
for scientific workloads.

2.1.2 Platform as a Service

Platform as a Service (PaaS) provides a computing platform as a service, supporting the complete life cycle
of building and delivering applications. PaaS often include facilities for application design, development,
deployment and testing, and interfaces to manage security, scalability, storage, state, etc. Windows Azure,
Hadoop and Google App Engine are popular PaaS offerings in the commercial space.

Windows Azure is Microsoft’s offering of a cloud services operating system. Azure provides a de-
velopment, service hosting and service management environment. Windows Azure provides an on-demand
compute and storage resources for hosting applications to scale costs. The Windows Azure platform supports
two primary virtual machine instance types – the Web role instances and the Worker role instances. It also
provides Blobs as a simple way to store data and access it from a virtual machine instances. Queues provide
a way for Worker role instances to access the work quantum from the Web role instance. While the Azure
platform is primarily designed for web applications, its use for scientific applications is being explored [8, 9].

Hadoop is an open-source software that provides capabilities to harness commodity clusters for dis-
tributed processing of large data sets through the MapReduce [5] model. The Hadoop streaming model
allows one to create map and reduce jobs with any executable or script as the mapper and/or the reducer.
This is the most suitable model for scientific applications that have years of code in place capturing complex
scientific processes.

The Hadoop File System (HDFS) is the primary storage model used in Hadoop. HDFS is modeled after
the Google File system and has several features that are specifically suited to Hadoop/MapReduce. Those
features include exposing data locality and data replication. Data locality is a key aspect of how Hadoop
achieves good scaling and performance: Hadoop attempts to locate computation close to the data. This is
especially true in the map phase, which is often the most I/O intensive phase.

Hadoop provides a platform for managing loosely coupled data-intensive applications. In Magellan syn-
ergistic activities, we used the Yahoo! M45 Hadoop platform to benchmark BLAST. In addition, Hadoop
has been deployed on Magellan hardware to enable our users to experiment with the platform.

2.1.3 Software as a Service

Software as a Service provides access to an application or software that has a specific function to the end
user. Amazon provides a higher-level service such as Elastic Map Reduce that allows applications to run
MapReduce jobs on EC2. In our project activities, we use the Windows Azure BLAST service to run BLAST
jobs on the Windows Azure platform. Similar technologies such as HBase provide specialized functions on top
of Hadoop. HBase is being used as a platform for managing genomics data and is being tested on Magellan
hardware. HBase provides key value access and tabular storage and provides the potential for addressing
these problems that cannot be solved with conventional relational database management systems.

2.2 Magellan Project Activities

Magellan project activities have been guided by two basic principles: data-driven and flexibility. Our efforts
are centered around collecting data about user needs and performance of cloud applications from a range of
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Table 2.1: Magellan Project Activities in reporting period

Activity Begin and End Date

Installation & Acceptance Dec 2009 - March 2010
User Survey Nov 2009 - Feb 2010
Benchmarking of commercial cloud platforms March - April 2010
Benchmarking of BLAST on commercial platforms Oct - Nov 2009
Hardware and software deployment Jan - Mar 2010
Hadoop benchmarking Apr 2010 -
Baseline benchmarking of existing private cloud plat-
forms

May - June 2010

Flash storage evaluation June 2010
Hardware as a service/JGI March - May 2010
Eucalyptus testing Dec 2009 - Feb 2010 and June 2010

sources – benchmarks and user applications on both private and cloud platforms. This data-driven approach
helps us understand the suitability of cloud environments for science. The diverse needs of scientific users
also drive us towards a flexible software stack and approach in our project activities.

Table 2.1 summarizes the project activities performed in the reporting period. Our project activities
included a detailed user survey to understand the applications and needs of our users, benchmarking efforts
to understand the performance of cloud environments, evaluation of various technologies including flash
storage, Hadoop, Eucalyptus, and deployment of hardware and software for wider use.

Collaborative and Synergistic Activities The Magellan project has a number of synergistic activities
through its collaboration. We outline these activities below:

• The benchmarking of commercial cloud platforms was performed in collaboration with the IT de-
partment at Lawrence Berkeley National Laboratory (LBNL), which manages some of the mid- range
computing clusters for scientific users; the Advanced Technology Group at NERSC, which understands
the requirements of current and emerging NERSC applications to find hardware design choices and
programming models; and the Advanced Computing for Science (ACS) Department in the Computa-
tional Research Division (CRD) at LBNL, which seeks to create software and tools to enable science on
diverse resource platforms. Access to commercial cloud platforms was also possible through collabora-
tion with the IT division and the University of California Center for Information Technology Research
in the Interest of Society (CITRIS), which had existing contracts with different providers.

• We collaborate closely with the Argonne Magellan group through bi-weekly teleconferences and periodic
meetings. Project personnel also have friendly early access to test environments at both sites. Early
efforts are underway to run applications across the two sites. Argonne’s MG-RAST, a fully automated
service for annotating metagenome sampes, and the Joint Genome Institute’s MGM pipeline are being
tested across both sites with fail-over fault tolerance and load balancing.

• We leveraged the partnership between the Joint Genome Institue (JGI) and NERSC to benchmark
the IMG and MGM pipelines on a variety of platforms. Project personnel were also involved in pilot
projects for the Systems Biology Knowledge Base. They provided expertise with technologies such as
HBASE which were useful in guiding the deployments on Magellan.

• Magellan project personnel were part of the team of researchers from LBNL who received the Best Paper
Award at ScienceCloud 2010. The paper describes the feasibility of porting the Nearby Supernova
Factory pipeline to the Amazon Web Services environment and offers detailed performance results and
lessons learned from various design options. The Nearby Supernova Factory is a Magellan application.

• The Advanced Networking Initiative (ANI) is another ARRA funded ASCR project. The goal of
ANI is to help advance the availability of 100Gb networking technology. The project has three major
sub-projects: deployment of a 100Gb prototype network, the creation of a network testbed, and ANI
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research projects. The later will attempt to utilize the network and testbed to demonstrate how 100Gb
networking technology can help advance scientific projects in areas such as climate research and High-
Energy Physics. The Magellan Projects at NERSC and ANL will help support ANI by providing
critical end points on the network to act as data producers and consumers. ANI research projects such
as Climate 100 and OSG are already working on Magellan to prepare for future demonstrations.
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Chapter 3

Project Activities

In this section we will describe the efforts to date and summarize the conclusions made so far. The efforts
thus far have included: gathering requirements from potential cloud computing users; hardware and software
deployment; initial benchmarking; and flash storage evaluation.

3.1 User Survey

Cloud computing introduces a new usage or business model and additional new technologies that have
previously not been applied at a large scale in scientific environments. The virtualization technology that
enables the cloud computing business model to succeed for Web 2.0 applications can be used to configure
privately owned virtual clusters that science users can manage and control. In addition, cloud computing
introduces a myriad of new technologies for resource management at sites and programming models and
tools at the user level.

It is critical to understand the needs of scientific applications and users and analyze these requirements
in concert with existing cloud computing platforms and solutions. In addition to the traditional NERSC
users, we identified three categories of scientific community users that might benefit from cloud computing
resources at NERSC:

Private cluster. Some scientific users prefer to run their own private clusters for a number of reasons.
They often don’t need the concurrency levels achievable at supercomputing centers, but do require guaranteed
access to resources for specific periods of time.

Personalized environment. A number of scientific applications have strong OS version dependencies
and need environments that are consistent with local cluster or desktop environments. In these cases, while
users might not care where the resources are located, they desire the flexibility associated with custom
software environments.

Science Gateways. Users of well-defined computational workflows often prefer to have simple web-based
interfaces to their application workflow and data archives. Web interfaces enable easier access to resources by
non-experts, and enable wider availability of scientific data for communities of users in a common application
area (e.g., Virtual Organizations).

We conducted a survey to understand the requirements and expectations of the user community. We
requested NERSC users and other communities in DOE that were interested in cloud computing to detail
their application characteristics and expectations from cloud computing. The survey is available through
the NERSC Magellan website at http://magellan.nersc.gov/

Table 3.1 shows the DOE Program Offices that the survey respondents belong to. The survey form and
the list of respondents are included in the Appendix. We summarize the details and the results from the
survey below.
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Table 3.1: Percentage of survey respondents by DOE Office

Advanced Scientific Computing Research 17%
Biological and Enviromental Research 9%
Basic Energy Sciences - Chemical Sciences 10%
Fusion Energy Sciences 10%
High Energy Physics 20%
Nuclear Physics 13%
Advanced Networking Initiative (ANI) Project 3%
Other 14%

0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 

Access to addi6onal resources 

Access to on‐demand (commercial) paid resources 
closer to deadlines 

Ability to control soBware environments specific 
to my applica6on 

Ability to share setup of soBware or experiments 
with collaborators 

Ability to control groups/users 

Exclusive access to the compu6ng resources/
ability to schedule independently of other groups/

Easier to acquire/operate than a local cluster 

Cost associa6vity? (i.e., I can get 10 cpus for 1 hr 
now or 2 cpus for 5 hrs at the same cost) 

MapReduce Programming Model/Hadoop 

Hadoop File System 

User interfaces/Science Gateways: Use of clouds 
to host science gateways and/or access to cloud 

(a) Features of cloud computing attractive to scientific users

Figure 3.1: Understanding the features of cloud computing that is of interest to scientific users.

3.1.1 Overview

We asked our users to identify the features of cloud computing that were most attractive to them. Users were
given several options and were allowed to select more than one category. Figure 3.1a shows the responses
selected by our users. Access to additional resources was the most common motivation for most of our users
and was selected by 79% of our respondents. A large number of users also wanted the ability to control
software environments (59%) and share software or experiment setup with collaborators (52%), which is hard
to do in today’s supercomputing setup. Additionally, clouds were also attractive due to ease of operation
compared to a local cluster (52%) and access to end users of science gateways (48%). A fraction of the users
were interested in exploring the use of Hadoop and the MapReduce programming model and the Hadoop
File System for their science problems.

In addition, 90% of our survey respondents also mentioned that there were others in their scientific
community that were either investigating or interested in investigating cloud computing. A majority of the
users also said other collaborators would be able to use their cloud setup.

3.1.2 Application Characteristics

Cloud computing provides a fundamentally different model of resource access than supercomputing centers
today. As we explore the applications that might benefit from the cloud environment and consider design
decisions, we need to understand the application characteristics better. We asked our users a number
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(d) Bandwidth requirements

Figure 3.2: Understanding the application characteristics of codes of users that are interested in cloud
computing as a platform

of questions about their applications. The users interested in using cloud computing had a varied set of
programming models, from traditional supercomputing parallel models, to MapReduce, to custom codes
that used one or more of these programming models. Figure 3.2b shows that the application’s execution
time for a majority of our users was in the order of hours (48%) or minutes (14%). In addition, the memory
footprint of a large number of these applications is less than 10 GB, and the bandwidth requirement is 1
Gbps today.

Similarly we polled our users on their data needs from the cloud. A large number of the scientific
applications rely on a parallel file system and expect local disk on the nodes. Applications also have large
amounts of data (order of gigabytes or terabytes) that they assume are available at the sites and/or data
that arrives from remote sites. Virtualization is expected to have an impact on application performance.
While a number of users anticipated their codes would be affected, the other advantages of cloud computing
still made it an attractive platform for them. Scientific applications additionally face other challenges when
running in cloud enviornments. Code bases often change and their codes need to be recompiled periodically,
requiring new virtual images to be created. Additionally, data is updated often and/or large data from the
runs need to be saved since virtual machines do not maintain persistent state.

13



Magellan Progress Report

0%  20%  40%  60%  80%  100% 

Use and expect a parallel file system 

Use and expect local disk 

Large amounts of sta?c data is required 
at the site where applica?on runs 

Input data arrives from offsite 

Output data needs to be pushed out to 
a different loca?on 

(a) Data characteristics of application

0%  10%  20%  30%  40%  50%  60% 

hundreds of megabytes 

< 10 G 

< 100G 

Terabytes 

Petabytes 

(b) Persistent disk requirements

0%	   20%	   40%	   60%	   80%	   100%	  

	  My	  code-‐base	  changes	  o6en	  and	  I	  
need	  to	  recompile	  my	  code	  

periodically.	  

The	  data	  is	  updated	  o6en	  

	  I	  need	  to	  save	  large	  amounts	  of	  data	  
from	  each	  run	  

(c) Characteristics that impact image creation

0%  5%  10% 15% 20% 25% 30% 35% 40% 

 Yes, I an0cipate it will run slower but 
the other features of cloud compu0ng 

make it more aArac0ve to me 

Yes, it can be a problem 

No 

Maybe 

Don't know 

(d) Performance impact of cloud environments

Figure 3.3: Understanding application characteristics that might impact design decisions in cloud environ-
ments
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3.1.3 Application Case Studies

We followed up the survey with one-on-one discussions with some of the application groups. We summarize
the discussions with some of the early cloud adoptors and their requirements from NERSC Magellan.

Climate 100. Climate scientists are better able to understand what is happening and evaluate the
effectivness of possible mitigations of global climate change by generating and sharing increasingly large
amounts of data. The goal of the Climate 100 project is to bring together middleware and network researchers
to develop the needed tools and techniques for moving unprecedented amounts of data using the ANI 100
Gbps network. The Climate 100 data consists of on the order of a million files that average about 100
megabytes each. Climate 100 could benefit from cloud environments such as virtual machines and Hadoop
to perform large-scale data analysis on the climate data. The volume of data requires coordination of
network, compute and disk resources.

Open Science Grid/STAR. The STAR nuclear physics experiment studies fundamental properties of
nuclear matter from the data collected at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider.
The STAR experiment has access to a number of different resource sites that are used for regularly processing
experiment data.

STAR experiments are embarrassingly parallel applications (i.e., non-MPI codes) where each job fits in
one processor or core. The STAR suite of experiments consists of various analysis and simulation programs.
The Monte Carlo cases in STAR are well suited to run in cloud environments due to the minimal requirements
on data transfer and I/O. The ability to control the software stack in a virtual machine is very attractive
to the community due to the complexity of the codes. The ability to grow in scale during burst periods
using existing virtual machine images would greatly enhance the scientific experimentation. The group has
previously demonstrated the use of Amazon EC2 resources to process large amounts of data in time for
the Quark Matter physics conference. Different groups in the STAR community are interested in cloud
computing and virtual machines. The community is investigating use of virtual machine images as a way of
packaging software for future experiments.

Supernova Factory. The Supernova Factory project is building tools to measure the expansion of the
universe and energy. The experiment has a large number of simulations that require custom environments
where the end results also need to be shared with other collaborators, and hence there is a need to co-
allocate compute and network resources and move the data to storage resources. The Supernova Factory
relies on large data volumes for the supernova search, and the code base consists of a large number of custom
modules. The complexity of the pipeline makes it necessary to have specific library and OS versions and
ends up being a barrier to making use of other large resource. The Supernova Factory project finds cloud
computing attractive due to the ability to control software environments and the ability to manage and
control user accounts and groups for access to the software. Initial experiments conducted by the group in
collaboration with Magellan project personnel on Amazon EC2 show that the cloud is a feasible platform
for this application. There is also interest in using Hadoop to coordinate and manage the loosely coupled
jobs.

ATLAS. The ATLAS project is investigating the use of cloud platforms to support analysis jobs. The
ATLAS project has hundreds of jobs that operate on terabytes of data and can greatly benefit from timely
access to cloud resources. The cloud environment also promises to be an effective platform for transitioning
scientific codes from testing on the desktop to large-scale cloud resources. The group is investigating the use
of virtual machine images for distribution of all required software [3]. This would enable sites to boot the
virtual machines at different sites with minimal or no work involved with software management.

Integrated Microbial Genomes (IMG) Pipeline. The Integrated Microbial Genomes (IMG) pipeline
at the DOE Joint Genome Institute (JGI) provides analysis of microbial community metagenomes in the
integrated context of all public reference isolate microbial genomes. IMG has workloads that need to run
periodically every few weeks to months for content maintenance [2]. Timeliness of completion of workloads
is critical for the community, and the tremendous growth of these data sets makes access to large number of
resources critical. The computational stage consists of functional annotation of individual genes, identifica-
tion of pair-wise genes, and identification of chromosomal clusters. The most computationally intensive step
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is performing a BLAST analysis against a reference database. Subsequent steps characterize the genes based
on the alignments reported by BLAST. The BLAST output alone is typically over a terabyte. Consequently
the analysis of the output to find the top matches and identify taxons can be time consuming and must
be done in parallel. There is an interest to use technologies such as Hadoop to ease management of these
loosely coupled application runs.

In early experiments conducted by the Magellan team personnel, we benchmarked BLAST on a variety
of HPC and cloud platforms. These results are discussed in greater detail in the benchmarking section.

Currently the output of all vs. all pairwise gene sequence comparisons is stored in compressed files.
However modifying individual entries and querying the data is not easy in this format. The group is
interested in exploring the use of HBase for managing data that will allow the users to update individual
rows and perform simple queries.

3.1.4 Summary of User Survey

The results of the detailed survey have helped us in understanding the science requirements for cloud en-
vironments and have influenced the direction of research in the project. We summarize the requirements
gathered from the user survey and corresponding project activities:

• The user requirements for cloud computing are diverse, ranging from access to custom environments
to the MapReduce programming model. These diverse requirements guided our flexible software stack.
Users of Magellan at NERSC will have access to a) traditional batch queue access with the additional
capability of custom software environments through xCAT; b) customized virtual machines through
Eucalyptus frontend enabling users to port between commercial providers and the private cloud; c)
a Hadoop installation that allows users to access the MapReduce programming model, the Hadoop
Distributed File System and other job management features such as fault tolerance. More details of
the software stack are presented in Section 3.2.2.

• It is important to understand if commercial cloud platforms such as Amazon EC2 and private cloud
software such as Eucalyptus and Hadoop met the needs of the science. We identified the existing gaps,
which are summarized in the position paper Defining Future Platform Requirements for e-Science
Clouds (available in the Appendix).

• In addition to understanding the gaps, we undertook a benchmarking effort to understand the compu-
tational scalability of commercial cloud platforms. These results are presented in Section 3.3.

• Our flexible software stack enables us to serve diverse user groups. The resulting mixed-use cluster
needs tools that support reconfiguration of individual nodes into any of the cluster types. We also need
the ability to manage accounting, data management, security, etc. across these software stacks. Some
of the challenges and future plans are detailed in Sections 4.1.4 and 4.1.5.

• Our users were also interested in a private cloud that would enable them to get the benefits of cloud
environments in conjunction with other facilities provided at supercomputing centers. For example,
HPC systems typically provide high-performance parallel file systems that enable parallel coordinated
writes to a shared filesystem with high bandwidth and capacity. HPC centers also typically provide
an archival storage system to archive critical output and results.

• Cloud computing addresses the portability of the software stack, a known issue with current grid
systems. In current supercomputing centers, the sites manage the operating system and common mid-
dleware that is needed across multiple groups. Users compile and install their applications on specific
systems (often with help from site personnel for optimizations necessary for particular hardware). As
we move to the cloud computing model, sites need to be able to provide tooling and support for man-
aging a diverse set of kernels and operating systems that might be required by specific groups. The
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clear separation of responsibilities for software upgrades and operating system patches no longer ex-
ists, and sites will need mechanisms to bridge the gap between supporting user-supported images and
site security policies. A cloud system where users have complete control of their images, has certain
implications on site security policies. Our security efforts are guided by these custom environments
and are discussed in Section 4.1.1.

3.2 Deployment

3.2.1 Testbed

A dedicated testbed was deployed to support the Magellan research agenda. Deploying a testbed versus
acquiring services on existing commercial cloud systems was critical to allowing us to address the research
questions. The flexibility to adjust aspects of the system software and hardware are necessary to under-
standing how these design points impact application performance and usability. For example, the ability to
measure the impact of virtualization or high-speed interconnects will provide insight for potential commercial
or private cloud offerings.

Computational Hardware

The Magellan cluster uses IBM’s iDataplex system, a hardware platform specifically designed for large-scale
systems with a focus on energy efficiency. The system consists of nine iDataplex racks, each containing 80
nodes. A summary of the configuration for each node is shown in Table 3.2. The total system has over
60 TFLOPS of peak floating pointing performance. The system provides a high-performance InfiniBand
network which is often used in HPC oriented clusters, but is not yet common in mainstream commercial
cloud systems. Since the network has such an large influence on the performance of many HPC applications,
the ability to explore the range of networking options from native InfiniBand to virtualized Ethernet was an
important design goal.

A production cluster, Carver, was deployed in conjunction with the Magellan cluster. Both systems were
procured under the same Request for Proposal process. The systems use identical hardware configurations.
Some of the benchmarking results have been collected on the Carver system, but the results should be
identical for the Magellan hardware.

Table 3.2: Node configuration on the Magellan cluster. There are 720 nodes in the Magellan cluster.

Feature Description

Processor Dual 2.66 GHz Intel Quad-core Nehalem
Memory 24 GB (48 GB in 160 nodes)
Local Disk 1 TB SATA (in 160 nodes)
High Performance Network 40 Gb InfiniBand (4X QDR)
Ethernet Network On-board 1 Gb
Management IPMI

The InfiniBand fabric was built using InfiniBand switches from Voltaire. Each node link has a wire speed
of 40 Gbs and can deliver around 3.5 gigabytes per second over MPI. Since the system is too large to fit
within a single switch chassis, multiple switches are used and they are connected together via 12x QDR links
(120 Gbs) configured as a fully connected mesh topology. This topology is less expensive than a traditional
full fat tree network yet still provides a relatively high bisection bandwidth.

The iDataplex system provides several innovative design features to improve energy efficiency. For ex-
ample, the nodes are about half the depth of typical rack mount servers. The shorter depth results in more
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Figure 3.4: Photos of the Magellan System at NERSC. The top image shows the overhead cabling system
which is suspended from the ceiling to seismically isolate the racks from each other. The lower image shows
three racks of compute nodes. The seismic isolation platforms are visible below the racks.
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efficient and uniform airflow since there is less air resistance. Additionally, two nodes are joined into a com-
mon node package. This allows larger, more efficient fans to be used. The system also allows for water-cooled
doors, which are described below.

Cooling Design

Rear-door heat exchangers (RDHX) are installed on the iDataPlex system which improves energy efficiency.
This cooling system removes the heat generated by each cabinet before the air is exhausted to the room, so
the entire system is room neutral. For the configuration at NERSC the system is actually able to remove
more heat than is generated by the rack, so it effectively assist in cooling the room. The RDHXs are
connected to two cooling distribution units (CDUs). The CDUs distribute chilled water to each door and
monitor the entrance and exit water temperatures to maintain temperatures above the dew point for the
room. NERSC worked with the CDU manufacturer to modify the design of the CDU to directly use the
building chilled water to feed the RDHXs versus the typical approach which uses a secondary chilled water
loop. This modification improves the efficiency. Futhermore, the configuration at NERSC uses the return
water from the Franklin Cray XT4 system. The Cray XT4 system must be operated at very low chilled water
temperatures and the return water temperature is still relatively cool. Utilizing the return water improves
the overall efficiency of the facility.

Storage Hardware

A high-performance scalable storage system was deployed as part of the testbed. The storage is configured
to run IBM’s high-performance parallel file system, GPFS. The storage hardware consists of four scalable
storage units. Each storage unit consists of a DataDirect S2A9900 Controller Couplet with 300 1 TB SATA
drives. Each unit is capable of delivering over 5 GB/s of peak bandwidth. The system is configured in
a RAID6 configuration for maximum redundancy. Drives are organized in an 8+2 configuration. There is
approximately 240 TB of RAID storage in each scalable unit. The total system provides almost 1 PB of total
storage. The existing NERSC SAN was augmented to accommodate the additional storage. Nine Magellan
I/O nodes are connected to the SAN and dedicated to providing GPFS services. The file system is mounted
across the cluster and service nodes. These file systems are also shared across the center. The service nodes
include the network nodes that will be used for testing of the Advanced Networking Initiative (ANI).

NERSC also expanded the archival storage system. A Sun (now Oracle) SL8500 library was installed
and integrated with three existing SL8500 libraries. Each SL8500 is capable of holding 10,000 tapes. The
library also included 35 T10K-C tape drives. The T10K-C can store 1 TB of uncompressed data on a single
tape. Consequently, a single SL8500 library can potentially store up to 10 PB of uncompressed data. The
hardware is managed by the High-Performance Scalable Storage (HPSS) software [7].

3.2.2 Software Stack

Flexibilty was a major objective in selecting the components of the software stack. Since Magellan will be
used to explore a variety of cloud service models and programming models, it was critical that the software
stack enable the system to be quickly reconfigured. The cluster is managed using a combination of IBM’s
xCAT cluster management software and Adaptive Computing’s Moab Adpative Computing Suite. These two
tools will allow us to provision nodes in the cluster from traditional batch environments to Amazon EC2-like
models to Hadoop-based MapReduce clusters. NERSC is working with Adaptive Computing to explore how
their software can be used to dynamically re-provision hardware between the different environments based
on demand, energy consumption, utilization, as well as other factors.

IBM’s xCAT cluster management software [12] provides a framework for provisioning and managing large
clusters. xCAT can provision nodes using a variety of methods including diskless, disk-full, and hybrid. The
framework can also utilize the IPMI management interface to automatically power on and off nodes. In
addition to providing command-line tools, xCAT also provides an API that can be used by other programs
such as Moab to remotely control the cluster.
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The Adaptive Computing Suite from Adaptive Computing provides resource management and a highly
capable scheduler to schedule and place workloads. The Moab Computing Suite represents Adpative Com-
puting’s foray into the cloud computing arena. It aims to provide a suite of tools that can be used to manage
private clouds. It provides an array of capabilities including integration with xCAT, green computing capa-
bilities, and support for virtual private clusters. The integration with xCAT enables Moab to automatically
provision nodes based on user job requirements. Moab can do bare metal provisioning with xCAT or use
xCAT’s hypervisor extensions to provision virtual machines. Moab can also interact with xCAT to power
off nodes when they are idle. While NERSC traditionally runs with very high utilization, this capability is
still interesting. Virtual Private Clusters (VPCs) offer another service model for offering compute resources.
A VPC can include a suite of services and compute elements to create an entire cluster. For example, a
VPC might include a head node running a private job scheduler, a database server, and a scalable number
of compute nodes. Eventually, VPCs could be integrated with network services to create a virtual private
network connection to other resources. This concept is described in more detail in Section 3.5.1.

Eucalyptus

The Eucalyptus project was first started to provide an open-source platform for conducting cloud computing
research. It was intended to be API compatible with Amazon’s EC2. A commercial company has since been
started to continue the development of Eucalyptus and support enterprise customers using Eucalyptus to
operate private clouds. Eucalyptus supports nearly all of the core features of EC2 including creating virtual
instances, elastic block storage (EBS), S3, and elastic IP addresses. Since the software is open-source, it is
possible to make modifications and add hooks and callouts to gather data. This makes it a useful tool for
exploring cloud computing for the DOE SC.

In this reporting period, we deployed Eucalyptus on a 40-node test cluster and experimented with the
software. Eucalyptus has a number of networking modes and we have experimented with the suitability of
each of the modes. We have experimented with managing virtual clusters on top of Eucalyptus, tested the
creation and deployment of new images, etc. Eucalyptus provides a convenient platform for creating and
managing a private cloud platform for multiple users. However Eucalyptus, like much of cloud computing
software, is still in its infancy and has design principles that may not be compatible with supercomputing
center policies. In addition, bugs of various flavors have been encountered. The commercial company is
currently focused on supporting its commercial offering and is limiting which capabilities it incorporates
in the open version. The future roadmap of Eucalyptus and other cloud software is somewhat unclear at
this time. ANL and NERSC plan to continue with Eucalyptus but are also evaluating alternatives such as
Nimbus. ANL and NERSC are also reaching out to other cloud related projects outside of DOE such as
NASA’s Nebula project and the NSF FutureGrid to explore potential synergies.

Hadoop

Hadoop (described in 2.1) is attracting the attention of multiple scientific communities. From the user survey
and discussions with users, Hadoop was cited as an area of high interest. A 40-node Hadoop cluster was
deployed shortly after the Magellan hardware completed acceptance. This has provided an early testbed
for users to explore the Hadoop model for their applications. Much of the early testing has come from the
bioinformatics community, but other groups have also expressed an interest.

3.3 Benchmarking

Scientific applications can be broadly classified as a) tightly coupled computations, or b) asynchronous or
loosely coupled computations. Tightly coupled applications are MPI codes that range from mid-range to
large-scale. Mid-range applications that need tens to hundreds of processors often run in local clusters, while
the large-scale codes run in supercomputing centers.
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Figure 3.5: Runtime of each application on EC2, Lawrencium and Franklin relative to Carver.

Some scientific explorations are performed on the desktop or local clusters and have asynchronous or
loosely coupled computations. However, the increased scale of digital data due to low-cost sensors and other
technology [8] has resulted in the need for these applications to scale to environments such as cloud environ-
ments. The requirements of such applications are similar to those of the internet applications that currently
dominate the cloud computing space, but with far greater data storage and throughput requirements.

It is important to understand the behavior of these classes of applications in cloud environments. We
have performed a number of benchmarking experiments to understand the performance of applications in
virtualized cloud environments and compared it to traditional HPC systems.

3.3.1 Experiment Setup

NERSC has a diverse user community with over 3,000 users, 400 distinct projects and around 600 codes
from the DOE Office of Science research community. The NERSC6 benchmarks is a set of application
benchmarks that span a range of science domains, parallel algorithms and concurrencies that has been
selected to represent the user workload based on detailed workload characterization. For our benchmarking,
we use a select set of the NERSC6 application benchmarks and High Performance Computing Challenge
(HPCC) benchmarks.

The benchmarking was conducted in two phases. In Phase 1, we compared the performance of a commer-
cial cloud platform (Amazon EC2) with HPC systems (Carver and Franklin) at NERSC and a mid-range
computing system (Lawrencium) at LBNL. The Carver and Magellan systems are identical in hardware
configuration and the traditional cluster configuration for Magellan uses the same software configuration as
Carver. Here we report the results for Carver but they apply equally for Magellan when it is operating as
a traditional cluster. The typical problem configurations for the NERSC6 benchmarks are defined for much
larger systems. We constructed reduced problem size configurations to target the requirements of mid-range
workloads.

In Phase 2, we are repeating the experiments of the reduced problem size configurations on Magellan
hardware to further understand and characterize the virtualization impact. This is an ongoing effort and we
report on early results.

3.3.2 Evaluation of Performance of Commercial Cloud Platform

Figure 3.5 shows the relative runtime of each of the test applications relative to Carver, which is the newest,
and therefore fastest, machine in our testbed. For these applications, at these concurrencies, Franklin and
Lawrencium are between 1.4× and 2.6× slower than Carver. For EC2 the range of performance observed is
significantly greater. In the best case, GAMESS, EC2 is only 2.7× slower than Carver. For the worst case,
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Table 3.3: HPCC Performance

Machine DGEMM STREAM Latency Bandwidth RandRing Lat. RandRing BW HPL FFTE PTRANS RandAccess
Gflops GB/s µs GB/s µs GB/s Tflops Gflops GB/s GUP/s

Franklin 8.4 2.30 7.8 1.6 19.6 0.19 0.47 14.24 2.63 0.061
Lawrencium 9.6 0.70 4.1 1.2 153.3 0.12 0.46 9.12 1.34 0.013

EC2 4.6 1.7 145 0.06 2065.2 0.01 0.07 1.09 0.29 0.004

Magellan VM 7 2.9 78.7 0.47 211.82 0.01 0.25 1.82 0.46 0.009
Magellan 10.2 3.8 1.81 3.48 5.17 0.31 0.57 29.58 9.56 0.040
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Figure 3.6: Preliminary results from experiments running NERSC applications on the Magellan testbed.
Data is still being collected for some of the data points at the time of this writing. Also the data collected
on the virtual machines were collected on an isolated testbed with less contention.

PARATEC, EC2 is more than 50× slower than Carver. This large spread of performance simply reflects the
different demands each application places upon the network.

These experiments and results are detailed in a manuscript in submission that is included in the Appendix.

3.3.3 Comparison of Virtualization and Bare Metal Performance on Magellan

We are conducting experiments on Magellan hardware to understand the impact of virtualization and other
cloud features on scientific applications.

The Magellan testbed enables us to exercise control on different configurations including compiler versions
and communication protocols. This allows us to study the impact of different parameters in greater detail.

Figure 3.6a shows the execution time on the smaller data sets set up for cloud evaluation in the previous
study. The graphs show preliminary data collected on the Magellan testbed and experiments are still being
conducted. We compared the application execution time on batch queue systems a) where the application
used native IB, b) where the application used TCP over IB for the communication, c) where the application
used TCP over Ethernet for communication, and d) where the application was run on a virtual machine.
The virtual machine data was collected on an isolated testbed whereas the other data was collected on the
shared production system. We will repeat these experiments on the isolated testbed to better understand
the impact of various factors. Figure 3.6b shows the execution time for larger sized NERSC6 benchmark
runs. As expected, the communication sensitive applications perform better with TCP over IB than TCP
over Ethernet due to the higher bandwidth. The performance of the applications on the virtual machines is
affected significantly for applications such as PARATEC that are communication sensitive and IMPACT-T
at a larger scale of 256 cores.

3.3.4 HPCC

The results of running HPCC v.1.4.0 on 64 cores on the machines in our study are shown in Table 3.3. The
DGEMM results are consistent with the processor performance as one for the benchmark. The STREAM
results show that EC2 is significantly faster for this benchmark than Lawrencium. We believe this is because
of the particular processor distribution we received for our EC2 nodes for this test. We had 26 AMD Opteron
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Figure 3.7: Performance and cost analysis of running BLAST on a number of cloud platforms

270’s, 16 AMD Opteron 2218 HE’s, and 14 Intel Xeon E5430’s, of which this measurement represents an
average. The AMD Opteron based systems are known to have better memory performance then the Intel
Harpertown processors used in Lawrencium. Both EC2 and Lawrencium are significantly slower than the
Nehalem-based system, however.

The network latency and bandwidth results clearly show the difference between the interconnects on
the tested systems. The uncontended latency and bandwidth measurements of the EC2 Gigabit Ethernet
interconnect are more than 20 times worse than the next slowest machine. Both EC2 and Lawrencium suffer
a significant performance degradation when self-contention is introduced, as demonstrated by the Random
Ring results. The EC2 latency is 13 times worse then Lawrencium, and more than 400 times slower then a
modern system like Magellan. The bandwidth numbers show similar trends: EC2 is 12 times slower than
Lawrencium, and 30 times slower than Magellan.

HPL is the high-performance version of the widely reported Linpack benchmark, which is used to de-
termine the TOP500 list. It solves a dense linear system of equations and its performance depends upon
DGEMM and the network bandwidth and latency. On a typical high performance computing system today,
roughly 90% of the time is spent in DGEMM, and the results for the three HPC systems illustrate this clearly.
However, for EC2 the less capable network clearly inhibits overall HPL performance, by a factor of six or
more. The FFTE benchmark measures the floating point rate of execution of a double precision complex
one-dimensional discrete Fourier transform, and the PTRANS benchmark measures the time to transpose a
large matrix. Both of these benchmarks’ performance depends upon the memory and network bandwidth
and therefore show similar trends. EC2 is approximately 20 times slower than Carver and four times slower
than Lawrencium in both cases. The RandomAccess benchmark measures the rate of random updates of
memory and its performance depends on memory and network latency. In this case EC2 is approximately
10 times slower than Carver and three times slower than Lawrencium.

Table 3.3 also shows the performance of the HPCC benchmarks on the Magellan hardware. DGEMM and
the synthetic benchmarks (HPL, FFTE and RadomAccess) show better performance on our VM compared
to EC2. The Ping Pong Latency and Bandwidth is better on our VM, but the RandomRing latency and
bandwidth is similar to EC2.

Overall the results of the HPCC runs indicate that the lower performing network interconnect in virtual
machines has a significant impact upon the performance of even very simple application proxies. This is
illustrated clearly by the HPL results which are significantly worse than would be expected from simply
looking at the DGEMM performance.
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3.3.5 Comparison of Performance of BLAST

The Joint Genome Institute’s Integrated Microbial Genomics (IMG) pipeline is a motivating example of a
workload with growing needs for computing cycles due to the growth of sequence data expected from next-
generation sequencers. We benchmarked the BLAST algorithm on HPC systems (Franklin at NERSC) and
cloud platforms including Amazon EC2, Yahoo M45! and Windows Azure. We managed the execution of
loosely coupled BLAST runs using a custom developed task farmer and Hadoop.

For this evaluation, we compared the performance data of running 2500 sequences against a reference
database of about 3 GB. Figure 3.7 shows the performance of the task farmer on Franklin and Amazon EC2
and the performance of Hadoop on EC2 and the BLAST service on Windows Azure. For this workload, the
performance of cloud platforms compares with traditional HPC platforms.

On Amazon EC2, the database and the input data sets were located on elastic block store (a high-speed
efficient and reliable data store provided by Amazon for use with one node) that is served out to the other
worker nodes through NFS.

We were provided friendly access to the Windows based BLAST service deployed on Microsoft’s cloud
solution, Windows Azure. The experiments were run on Azure’s large instance that has four cores/1.6 GHz
and 7 GB of memory. This instance type is between the large and xLarge instances we used on Amazon
EC2. On Azure, the total time for data loading into the virtual machines from the storage blob and back
to the storage blob is also included in the timing. Additionally the data sets were partitioned equally across
the nodes and we see the effects of bunching. Thus the model here is slightly different from our setup on
Hadoop but gives us an idea of the relative performance.

We ran the same experiment on Yahoo! M45, a research Hadoop cluster. The performance is comparable
to other platforms with a small number of sequences. The load on the system affects execution time, inducing
large amount of variability, but performance seems to be reasonable on the whole. However, when running
250 concurrent maps (10 genes per map, 2500 genes total), there is a heavy drop in performance – the overall
search completes in 3 hours and 39 minutes. This seems to be the result of thrashing since two map tasks,
each requiring about 3.5 GB, are run per node with 6 GB memory.

We extrapolated from the running times the cost of commercial platforms to run a single experiment of
12.5 million sequences (run every 3 to 4 months). The cost of a single experiment varies from about $14K to
$22K dollars based on the type of machine and the performance achieved on these platforms (Figure 3.7).

There is a reasonable amount of effort required to learn these environments and to get these environments
set up for a particular application. Early results of this work were presented at the System Biology Cloud
Workshop at SC09. A manuscript is in preparation with additional experiments that explores the different
data storage and communication options.

3.3.6 Hadoop Benchmarks on Magellan

We benchmarked the Hadoop Magellan cluster with available Hadoop tests. The benchmarking data enables
us to set a baseline to compare against when performing optimizations for scientific workloads in the future.

MRBench evaluates the performance of MapReduce systems while varying key parameters such as data
size and the number of Map/Reduce tasks. We varied the number of lines of data written from 100 to 1000
and varied the number of maps and reduces. Figure 3.8 shows the time with varying maps and reduces for
a) 100 and b) 1000 lines. As the number of maps and reduces increases the time taken increases; however
the difference is less than 10 seconds. The number of lines written at the orders of magnitude we measure
shows no perceptible effect. MRBench can be provided with custom mapper and reducer implementations
to measure specific system or application behavior. There is a need to develop benchmarks that emphasize
the nature of scientific workloads.

TestDFSIO measures the I/O performance of HDFS. Figure 3.9 shows the throughput for small and large
file sizes with varying concurrent writers/files. For small file sizes, the throughput remains fairly constant
with varying number of concurrent writers. However, the throughput decreases rapidly as the number of
concurrent files/writers increases. This seems to be dependant on the HDFS block size and will require
tuning and additional benchmarking to understand the configuration necessary for scientific applications.
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Figure 3.8: Hadoop MRBench.
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Figure 3.9: HDFS throughput for different file sizes with varying number of concurrent writers.

Table 3.4: Terasort

Program Time (minutes)
TeraGen 42
TeraSort 91

TeraSort is a standard map/reduce application for Hadoop that was used in the terabyte sort competi-
tion. TeraGen generates the data, and TeraSort then samples the input data and uses map/reduce to sort
the data in total order. Table 3.4 shows the timing for running TeraGen and TeraSort on our 40-node (312
cpu) cluster with 64 reduce tasks.

The Hadoop benchmark enables us to benchmark some base system parameters. However, the nature
of scientific workloads using Hadoop is largely unknown today. Thus further understanding and tuning of
system parameters will be needed to manage Hadoop workloads.

25



Magellan Progress Report

3.3.7 Summary of Benchmarking

Applications that perform the most collective communication and send the most messages perform the
worst on EC2 and Magellan virtual machines. We plan to run additional experiments at larger scales
and instrument applications with IPM to understand the impact on mid- to large-sized scientific codes on
virtualized and non-virtualized cloud environments. IPM provides a low-overhead performance profile of the
performance aspects and resource utilization of scientific applications. In addition, we are planning additional
benchmarking with user codes. A special queue on Magellan will enable users to collect benchmark data
with IPM turned on. Similarly users will be provided access to Eucalyptus to compare the performance of
their applications on virtual environments.

3.4 Flash Storage Evaluation

Solid-state storage (SSS) is poised as a disruptive technology. This impact would likely affect both the cloud
computing and scientific computing spaces. For these reasons, flash storage evaluation was included in the
Magellan project. Magellan at NERSC is first evaluating several products and will deploy a larger storage
system based on this evaluation. The technologies being evaluated include three PCI-e connected solutions
and two SATA connected solutions. Table 3.5 summarizes the products that are under evaluation.

NAND flash devices have dramatically different performance characteristics compared with traditional
disk systems. NAND typically delivers much higher random read rates. However, NAND chips must be
erased prior to writing new data. This erase cycle can be extremely slow. For example, NAND may require
several milliseconds to erase a block, yet can perform a read of block in several microseconds [11]. To help
mask this impact, many high-end devices utilize background grooming cycles to maintain a pool of erased
blocks available for new writes.

While one expects the superior performance of flash, particularly for random read operations, to lead to
improved application performance, experience shows that this is not always the case. Often code paths in
the kernel or applications have not been sufficiently optimized to take advantage of the performance the new
devices can deliver. In some cases, this is due to decades worth of optimization to deal with the distinct
performance characteristics of disk. Swap algorithms and IO schedulers will often buffer and flush data to
minimize the number of writes. However, these optimizations can increase the latency and prevent the flash
devices from maintaining a sustained stream of IO operations. Additionally, many of the devices benefit
from a high number of threads issuing writes. This prevents the buffer queues from being exhausted too
quickly. For disk systems, this can have an adverse effect of creating extra head movement, which slows down
throughput. The difference in the performance characteristics between disk and solid state storage make
it clear that applications need to be evaluated to see what near-term benefit SSS can provide. Eventually,
improvements in the algorithms in the kernel, middleware, and applications may be required to realize the
full potential.

Benchmarking efforts to date have focused on measuring the bandwidth the devices can deliver. Plots
in Figure 3.10 show the performance of the devices across a range of blocks sizes for both sequential read
and write. Ongoing benchmarking is focused on identify how the devices behave under a sustained heavy
random-write load to address the impact of any grooming cycles. Of the card-based solutions, this impact
is most prevalent on the FusionIO device, where the bandwidth can drop over an order of magnitude during
grooming. For applications with very high-burst IO followed by several minutes of idle IO, this grooming
cycle could be hidden from the application. However, few applications are likely to be so well behaved, and
mixed workloads further complicate the picture.

3.5 Usage and Impact

The Magellan system is already having an impact. The Magellan hardware was immediately placed into
service running as a traditional computing cluster. This allowed NERSC users to quickly take advantage
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Table 3.5: Summary of flash-based storage products that were evaluated.

Manufacturer Product Capacity
PCI-e Attached Devices - All use SLC Flash
Texas Memory Systems RamSAN 20 450 GB
FusionIO ioDrive Duo 320 GB
Virident tachIOn 400 GB
SATA Attached Devices - Both use MLC Flash
Intel X25-M 160 GB
OCZ Colossus 250 GB
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Figure 3.10: Performance of Sequential Read and Write IO Benchmarks performed on PCI-e attached flash
storage devices and SSDs. The plots are for 16 concurrent threads issuing IO with varying block size.
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of the system and prevent the system from being under-utilized while new cloud models are configured and
deployed on the system.

3.5.1 Hardware as a Service – Joint Genome Institute

Hardware as a Service (HaaS) offers one potential model for supporting the DOE’s scientific computing
needs. This model was explored early with Magellan when a facility issue at the Joint Genome Institute
(JGI) led to their need for rapid access to additional resources. NERSC responded to this by allocating 120
nodes of Magellan to JGI.

Using ESnet’s OSCARS [6] and the Science Data Network, nine 1 Gb Layer 2 circuits were provisioned
between NERSC’s Oakland Scientific Facility (OSF) and the JGI Walnut Creek Facility. In essence, the JGI
internal network was extended twenty miles away to the Oakland facility. These two locations are adjacent
on the ESnet Bay Area MAN (Metropolitan Area Network), and therefore there was ample bandwidth
with relatively low latency. Dedicated switches at OSF were connected to the layer 2 connection, and the
allocated compute nodes were connected to this network. To maintain separation, the InfiniBand network
was disconnected on the allocated nodes. OS provisioning was handled using JGI’s existing management
infrastructure, and the allocated nodes were booted over the Layer 2 network. As a result, the nodes had
immediate access to all the critical data, databases, and account management services at JGI. This included
accessing NFS file servers located in Walnut Creek. Within days, JGI users were running jobs on the allocated
hardware. The hardware and network proved extremely stable. No changes were required on the part of the
users. They simply submitted to the existing Sun GridEngine scheduler as usual. Jobs were transparently
routed to the nodes in Magellan. This effort not only demonstrated the validity of hardware as a service,
it enabled JGI to continue operations through a potential crisis with no impact on production sequencing
operations.

While this demonstration was a success, the experience illustrated several areas for improvement. Ulti-
mately, true hardware as a service requires a nearly automated, on-demand ability to provision hardware and
create the necessary network connections to remote resources. For example, the requirement to disconnect
the InfiniBand network should be handled by software. This could potentially be addressed by disabling
ports on the switch or in the subnet manager. Alternatively, virtualization could be used to create virtual
machines that would aid in the separation of resources. Another improvement would be to automate the pro-
visioning and configuration of the network. ESnet’s OSCARS provides much of this capability, but it would
need to be integrated with the resources manager like Moab and GridEngine. Eventually, one could envision
a model where a system administrator at a DOE site would identify the need for more resources. With a
few simple commands, the administrator could request resources from Magellan. The Magellan scheduler
would allocate the resources and communicate with OSCARS to provision the network link between the two
distant sites. Finally, Magellan would provision the nodes, either using a user-provided image or by directly
booting from management services at the home site. NERSC and ESnet are working together to explore
this model with the goal of demonstrating the capability using Magellan.

3.5.2 Traditional Cluster Usage

The Magellan system has been available for use in a traditional HPC cluster configuration since acceptance
was completed. Users have accumulated over 12.8 million core hours between March 17 through June 24,
2010. Users from all offices have made use of the system in that time (Table 3.6 and Figure 3.11a). However,
BES accounted for 70% of the utilization, followed by BER with 13%. The high utilization by BES is
primarily due to several material science and chemistry projects taking advantage of the system. Many of
these projects use mid-range applications that are particularly well suited to a system like Magellan. The top
two users were both from BES and accounted for 30% of the overall usage. A plot of the usage at different
job size is shown in Figure 3.11b. The plot illustrates that much of the usage is consumed by jobs running
at 128 cores or larger (79%).
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Table 3.6: Summary of usage of Magellan as a traditional cluster by office from March 17, 2010 through
June 25, 2010.

Office Raw Hours Percent
Basic Energy Sciences 8,852,300 69%
Biological & Environmental Research 1,683,150 13%
High Energy Physics 1,169,420 9%
Fusion Energy Sciences 582,004 5%
Advanced Scientific Computing Research 403,169 3%
Nuclear Physics 104,362 1%
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Figure 3.11: Usage by DOE Program Office and job size on Magellan as a traditional cluster between March
17, 2010 and June 24, 2010.
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Chapter 4

Challenges and Future Plans

4.1 Challenges

4.1.1 Security and User-Provided Images

The majority of cloud related security analysis and security research has been from the perspective of
the cloud service consumer. However, the problems and concerns are quite different for a cloud provider.
The ability for users of the system to have local root privileges on the booted virtual machine instances
fundamentally changes how those systems should be treated and secured. In many ways, the challenges of
securing these virtual machines overlap with the existing challenges of securing a general use batch execution
environment. However, when users are able to bring in their own system images, many of these problems
are exacerbated. Furthermore, new methods for securing the systems are needed. Challenges created by this
can be broadly placed into two major groups: system access and network communications.

System access can be broadly thought of as controlling who is able to access a computer system and
what services are provided. One of the most fundamental controls typically provided by system ownership
is the ability to decide who is allowed to access that resource. This is true in terms of user accounts as
well as services which might provide privileged and unprivileged access to the system. Account creation
represents a very real threat in a traditional notion since controlling user accounts is one of the most basic
ways of controlling access. Once users are allowed to bring in their own system images, it is necessary
to give up absolute control of user accounts. System integrity is another aspect which represents a real
challenge. In essence, the responsibility and risk of securing and maintaining an image shifts from resource
administrators to the image providers. If an image is poorly maintained or configured and provides remote
access (intentionally or unintentionally), it may be possible to gain privileged access to the system via local
vulnerabilities. Additionally, there may be issues of resource stability if untested software is put together on
the part of the user.

Network communications describes the set of issues related to providing remote access (such as web
services) as well as limiting where a system is able to connect to. As alluded to previously, a system image
may include un-patched or misconfigured applications which can create a security threat when the image is
instantiated. For any but the most transient services, such applications are rapidly discovered by scanning
and exploited by automated bots. Additionally, with root access comes the ability to control how a system
communicates in terms of system routing, tunneling and access to raw sockets. The socket problem is
particularly troublesome in that it provides the ability to attack the actual Ethernet infrastructure in a way
which is outside the traditional threat model.

Fortunately, addressing these challenges is not as difficult as it might otherwise seem. A combination
of both of policies and software controls can be employed. It is possible to perform basic checks against
system images that will test for known problems and to incorporate these checks into the image registration
process. In addition, users may be required to run specific versions of certain software. For example, NERSC
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uses a modified version of the SSH Daemon which captures keystroke data and looks for suspicious behavior
typically observed in compromised systems. Also, the resource provider controls network and system access
to the entire cloud infrastructure. This presents opportunities for both monitoring and lmiting network or
system access. Finally, educating the user base on appropriate activity as well as providing simple tools for
testing and validation may be the most effective action we can take. Ultimately, both the resource providers
and the scientific users share a common desire to maximize the use of the resources for scientific discovery.

4.1.2 InfiniBand Support for Virtual Machines

The performance evaluation in Section 3.3 illustrates the importance of a high-bandwidth, low-latency net-
work. However, combining virtual machines and InfiniBand network presents several challenges. Possible
methods for extending the InfiniBand network inside a virtual machine include: routing IP over IB from
the Hypervisor to the virtual machine; bridging Ethernet over IB through the Linux bridge to the virtual
machine; and full virtualization of the NIC. We will briefly discuss these options, including the benefits and
tradeoffs and the current issues.

Routing IP packets from the virtual machine (VM) to the hypervisor (HV) and then using IP over IB is
the most readily available approach today. In this approach, the VM communicates through the HV using a
virtual network interface. Then standard IP routing is used to route the packets over the IB interface. This
approach provides the lowest performance of the various options. Since the packet must traverse multiple
TCP stacks (in the VM and through the HV), the overhead is high. There are also some challenges in
integrating this with cloud management software like Eucalyptus.

Utilizing Ethernet over IB is another approach. In EoIB, first proposed by Mellanox, the Ethernet frames
are encapsulated in an InfiniBand packet. The InfiniBand stack presents a virtual Ethernet NIC. This virtual
NIC would be presented on the HV and then bridged to the VM. This approach has several advantages over
the other approaches. VLANs should be supported in this model, which would provide some support for
isolating networks. Bridging of the virtual Ethernet interface is similar to how Ethernet NICS are commonly
bridged for a virtual machine. This means that packages like Eucalyptus could more easily support it. Since
the communication would be TCP based, some performance would be lost compared with remote memory
access offered by native InfiniBand. However, the packets would only go through a single TCP stack (on
the VM) on each side. So the performance should exceed the IP over IB method. While this approach
looks promising, the current EoIB implementation doesn’t support Linux bridging. NERSC is in discussions
with Mellanox about adding support for this. Another disadvantage is that only Mellanox currently plans
to support EoIB, and it requires a special Bridge device be connected to the InfiniBand network. However,
the devices are relatively low cost.

Full virtualization of the IB adapter is just starting to emerge. This method would provide the best
performance, since it would support full RDMA. However, it would be difficult to isolate networks and protect
the network from actions by the VM. Furthermore, images would have to include and configure the InfiniBand
stack. This would dramatically complicate the process of creating and maintaining images. Finally, only
the latest adapters from Mellanox are expected to support full virtualization. The version of adapters in
Magellan will likely not support this method. We are exploring options for evaluating virtualization of the
NIC and looking at alternative methods.

High-performance networks like InfiniBand can dramatically impact the performance, but integrating
them into virtual machine based systems is difficult. It is unclear at this point if improving this support
is the best approach. Alternatively, it may be more attractive to look at how some of the benefits of
virtualization can be provided to the users without using true virualization. For example, can dynamic
imaging of nodes or software overlay methods be used to allow the user to tailor the environment for their
application? This is one of the key questions that Magellan will continue to explore.
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4.1.3 Secure Access to Shared File Systems from Virtual Machines

HPC systems typically provide a high-performance scratch file system that is used for reading initial condi-
tions, saving simulation output, or writing checkpoint files. This capability is typically provided by parallel
file systems such as GPFS, Lustre or Panasas. Providing this capability for virtual machine based systems
presents several challenges including security, scalability, and stability.

The security challenges focus around the level of control a user would have within the virtual machine.
Most parallel file systems use a host based trust model, i.e., a server trusts that a client will enforce access
rules and permissions. Since the user would likely have root privileges on the VM, they would be capable of
viewing and modifying other users’ data on the file system.

Accessing shared file systems from user controlled virtual machines can also create scalability and stability
challenges. Since each node could potentially run many virtual machine instances, the file system could see
a multiplier of file system clients. If each node was running eight small instances (one on each core) then
the file system would have to deal with eight times more clients. Furthermore, virtual machines are often
terminated versus performing a clean shutdown. This could lead to clients frequently joining and leaving the
file system cluster. File systems like GPFS and Lustre employ timeout and heart beat methods that assume
a relatively stable client pool. Clients randomly disappearing could lead to long hangs while outstanding
locks held by terminated instances were timed out.

There are several potential methods to address these issues. One would be to project only the portions
of the file system that the user owns into the virtual machine. This could be done using protocols like NFS
and re-exporting the parallel file system. Another approach would be to forward the file IO operations to
a proxy server that would have the file systems mounted. The operations would then be performed on the
proxy server as the user who owned the virtual machine instance. The standard file system client would
enforce the access controls.

There are existing file system modules that use the Linux FUSE file system interface to forward IO
over connections like SSH. The performance over SSH would be poor, but would at least provide access to
data. Alternative, the IOFSL project [1] is developing a high-performance IO forwarding layer that could
potentially help. While IOFSL is focused on developing an IO forwarding system to support ultra-scale HPC
systems, the same mechanisms can be used for virtual machines. These solutions would also help mitigate
the scaling and stability challenges too since they would reduce the number of real clients handled by the
file system and would act as a firewall between the virtual machines and the file system.

4.1.4 Hadoop Programming Interface

Hadoop applications are designed to use HDFS to get the benefit of data-location scheduling. This model
can be used for scientific applications, but requires rewriting the applications to use the HDFS file system
interface. Some projects have implemented native Hadoop based applications that take advantage of the
full capabilities of the MapReduce model by using HDFS. For example, the authors of CloudBurst have
implemented short read mapping for genomic sequence data in Hadoop [10]. However, rewriting applications
to use a new file system interface is unlikely to be practical for most application groups, especially those
with large legacy code bases that have undergone decades of validation and verification.

The Hadoop streaming model allows one to create map and reduce jobs with any executable or script as
the mapper and/or the reducer. This is the most suitable model for scientific applications that have years of
code in place capturing complex scientific processes. This approach does not benefit from the data locality
aspects of Hadoop, but a number of groups are interested in the tool as a means to managing loosely coupled
asynchronous runs. In addition, tools above Hadoop such as HBase are useful for data management and
querying that has largely been handled through ad-hoc solutions in the scientific community.

4.1.5 Eucalyptus Accounting and Scheduling

In this reporting period, we deployed and tested Eucalyptus on our testbed. A number of our users have
tested and experimented with Amazon’s Web Services. Thus the interface compatibility of Eucalyptus with
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Amazon makes it an attractive choice for us to enable direct extensibility of resources available to the end
user both at NERSC and through private cloud providers.

As stated earlier, Eucalyptus is a convenient platform for creating and managing virtual machines.
However, Eucalyptus does have some limitations. Eucalyptus’ error checking and handling of failures can
result in an inconsistent state of the system, often requiring a clean restart. This is clearly not feasible in a
production environment that serves a large community of users.

The resource allocation and accounting model in Eucalyptus is different from the traditional supercom-
puting model. The resource control in the cloud model is explicit, where resources are allocated on demand at
the instant the resources are requested. Batch queue systems such as Moab, PBS, etc. provide customizable
policy points and algorithms to control scheduling of requests and resources. Similarly, there is a need for
policy points in the cloud infrastructure and the ability to store and service requests when resources cannot
be allocated immediately.

4.2 Future Plans

For the remainder of the Magellan Project, NERSC will focus on addressing many of the challenges dis-
cussed earlier and resolving the outstanding questions from the Research Agenda. Here is a brief list of the
capabilities we plan to deploy and research questions we will study.

• Continue to study how applications behave in cloud environments and what applications are best suited
to running in current and emerging commercial cloud offerings. Our early study indicates that ap-
plications with synchronous communication needs perform poorly in virtual cloud environments. We
are conducting further benchmarking and testing to understand the impact of virtualization on differ-
ent resource needs including memory, I/O, bandwidth, power. This will enable us to determine the
efficiency of cloud computing with respect to DOE Office of Science workloads.

• Utilize monitoring tools to collect data on application characteristics for jobs run on the traditional clus-
ter configuration of Magellan. We plan to use IPM to understand the characteristics of the application
codes run at NERSC to identify the codes that might benefit from a cloud environment.

• Deploy a limited number of specialized project images. We will select a small number of projects and
prepare special images that will run in on “bare metal” without virtualization. We will use this to
evaluate how to automate provisioning on demand.

• Provide capabilities for users to instantiate their own images while closely considering the security
implications. We will build and test a simple accounting model in Eucalyptus to track user usage and
introduce simple scheduling policies to ensure fairness amongst the users. In addition we will apply
security strategies and policies as discussed earlier.

• Provide support for virtual private clusters. Virtual private clusters are sought by a number of user
groups at NERSC that would like dynamic access to resources for a specified period of time. Cloud
technologies enable us to implement dynamic on-demand private clusters that allow users complete
control on the resource set for a specific period of time.

• Users will be given access to the flash resources. We will evaluate models where the flash is accessed
both as a requestable resource and as back-end storage device for network file system.

• Evaluating networking options in cloud environments including how to best utilize InfiniBand in vir-
tual machines. Current offerings of cloud computing, both private and commercial, rely on Ethernet
networks. We are exploring the networking options within virtual machines with the goal of improving
the environment for scientific workloads.
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• Access to shared file systems. The user survey indicated that users were interested in a cloud setup at
NERSC that would let them leverage both the benefits of cloud environments as well as traditional
supercomputing services such as access to parallel file systems and mass storage systems. We will begin
exploring ways to securely provide access to shared file systems from virtual machines.

• Enable applications to use Hadoop technologies. Our early work shows that Hadoop and related tech-
nologies such as HDFS and HBase are useful for data-intensive sciences. We will work closely with the
IMG pipeline and Supernova Factory to develop cost-effective porting of their applications to run in
Hadoop.

• Enable single front-end to multiple clouds. We are working with application groups such as IMG and
Open Science Grid (OSG) to access cross-site cloud sites. We will explore ways for applications to
leverage cloud sites at Argonne, NERSC and commercial providers simultaneously.
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Chapter 5

Conclusions

The mission of the Magellan Project is to understand the role of cloud computing in the resource needs for
the Department of Energy’s Office of Science (DOE SC). NERSC has adopted a data-driven approach and
has deployed a flexible testbed that will be used to explore and evaluate various cloud computing technologies
and solutions. The 720-node cluster is available to users through traditional batch queues and is already
having an impact. NERSC has solicited input from users to understand their motivations and interest in
cloud computing that has motivated our testbed software stack and design decisions. Existing NERSC users
across all DOE Program Offices are already making heavy use of the system. In addition, we demonstrated
successful deployment of Hardware as a service at the Joint Genome Institute. Hadoop and Eucalyptus have
also been deployed on the Magellan system that is being used for benchmarking and testing as well as to
support early cloud users. We have benchmarked the NERSC6 Application Suite and the HPCC Benchmark
on a variety of architectures including traditional HPC systems, public and private cloud systems. The
results to date illustrate the potential impact cloud computing can provide for DOE SC, but also point to
some of the weaknesses and gaps in the current offerings. During the remainder of the project will we study
these issues in more detail and explore potential approaches to addressing these challenges.
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Appendix A

User Requirements Detail

A.1 Questionaire
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NERSC Magellan - Cloud Computing 
Interest Detailed Form 
We are collecting additional data from users on their applications to understand the needs in cloud 
environments. Please fill out the form.  

 
* Required 
 
Name *   
 
Email address *   
 
NERSC username   
 
NERSC repo   
 
Title *   
 
Which of the following cloud computing features do you find most attractive. Please check all that apply. *  

•  Access to additional resources  
•  Access to on-demand (commercial) paid resources closer to deadlines  
•  Ability to control software environments specific to my application 
•  Ability to share setup of software or experiments with collaborators 
•  Ability to control groups/users 
•  Exclusive access to the computing resources/ability to schedule independently of other 

groups/users 
•  Easier to acquire/operate than a local cluster 
•  Cost associativity? (i.e., I can get 10 cpus for 1 hr now or 2 cpus for 5 hrs at the same cost) 
•  MapReduce Programming Model/Hadoop 
•  Hadoop File System 
•  User interfaces/Science Gateways: Use of clouds to host science gateways and/or access to cloud 

resources through science gateways 
 
Please add any other details as to why cloud computing might be attractive to your group.   
 

Application Details 
 
Identify DOE Office and Program of your application *  

•  Advanced Scienitific Computing Research - Advanced Mathematical Sciences 
•  Advanced Scientific Computing Research - Computer Sciences 
•  Biological and Environmental Research - Biology Systems Science 
•  Biological and Environmental Research - Biological Systems Science -SciDAC 
•  Biological and Environmental Research - Climate and Environmental Sciences 
•  Biological and Environmental Research - Climate/Environment - SciDAC 
•  Basic Energy Sciences - Chemical Sciences 
•  Basic Energy Sciences - Geosciences 
•  Basic Energy Sciences - Material Sciences 
•  Fusion Energy Sciences - Fusion Base Program 
•  Fusion Energy Sciences - Fusion SciDAC 
•  High Energy Physics - Accelerator Physics 
•  High Energy Physics - Astrophysics 
•  High Energy Physics - Lattice Gauge Theory 
•  High Energy Physics - High Energy Physics Theory 
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•  Nuclear Physics - Accelarator Physics 
•  Nuclear Physics - Astrophysics 
•  Nuclear Physics - Lattice Gauge Theory 
•  Nuclear Physics - Nuclear Theory 
•  Advanced Networking Initiative (ANI) Project 
•  Other:   

 
Identify the category that your application falls under. *  

•  Dense linear algebra 
•  Sparse linear algebra 
•  Spectral methods (FFT)s 
•  Particle Methods 
•  Structured Grids 
•  Unstructured or AMR Grids 
•  MapReduce 
•  Other:   

 
How do you manage the data for your application? Please check all that apply *  

•  Use and expect a parallel file system 
•  Use and expect local disk 
•  Large amounts of static data is required at the site where application runs 
•  Input data arrives from offsite 
•  Output data needs to be pushed out to a different location 

 
Provide rough orders of magnitude on running time of a single application run *   
 
How many runs do you typically perform and how frequently? *   
 
How many cores do you need for a single run? *   
 
Provide rough orders of magnitude on your memory requirements *   
 
Provide rough orders of magnitude of persistent disk requirements *   
 
What is the typical input data size for a single run of your application? * Please enter a number and units of 
data size   
 
What is the typical output data size for a single run of your application? * Please enter a number and units 
of data size   
 
What are bandwidth requirements in or out of NERSC? *   
 
Does your application require a specific operating system or version of the operating system? Please 
specify *   
 
Does your application require specific kernel versions or modules? Please specify *   
 
Does your application require specific libraries? Please specify. *   
 
Would you like to specify any additional details about the application?   
 

Use of Cloud Computing  
 
Describe how many CPU hours you will need for validating cloud computing to be a valid platform choice 
(proof of concept runs)? *   
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Describe how many CPU hours you will need for using cloud computing on an ongoing basis? *   
 
Virtual machines are a popular mode of operation in cloud computing that tends to affect some applications 
in terms of performance. Will this affect your application. Please specify *  

•   Yes, I anticipate it will run slower but the other features of cloud computing make it more 
attractive to me  

•  Yes, it can be a problem 
•  No 
•  Maybe 
•  Don't know 

 
Cloud computing relies on pre-configured images for the OS and software. The nodes do not have any 
persistent state. Check all that apply that affects your application. *  

•   My code-base changes often and I need to recompile my code periodically. 
•  The data is updated often 
•   I need to save large amounts of data from each run  

 
Will there be other users or collaborators who can use your cloud setup to run their experiments? *  

•  Yes 
•  No 
•  Maybe 

 
Are there others in your scientific community interested in or looking at cloud computing? *  

•  Yes 
•  No 

 
Additional comments.   
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A.2 List of Projects expressing interest

Climate100: Scaling the Earth System Grid to 100 Gbps Networks
PI:Alex Sim(ASCR)
Description:

As one of ANI research projects, we want to use Magellan for research on scaling climate applications
to next generation network, computing and storage capacity. We understand that Magellan would not have
100Gbps connection soon. We will use currently available resources first and extend later when higher ca-
pability is available. Climate100 is described on http://sdm.lbl.gov/climate100.

MapReduce for Bioinformatic tools
PI:Ernest Szeto(BER)
Description:

1. Want to test MapReduce (MR) for BLASTP and BLASTX streaming API. 2. Test higher level script-
ing tools that don’t explicitly require writing MR jobs, such as the data flow (workflow) scripting languages
such as PIG. Possibly the same for SQL-like languages (Hbase). 3. Besides batch computing, test data
storage tools such as Hbase for low latency interactive UI use. (Use MR for sorting/reorganizing for bulk
loading. Use distributed hash for fast retrieval.)

BIO-Portal
PI:Ewa Deelman(BER/Outside)
Description:

This project aims at providing a science gateway for Genomics Workflows. Currently we have a portal
http://wind.isi.edu/wings/index.php?id=53 that provides the ability to run a number of differnet genomic
analysis. We would like to explore the ability to host such an environment on the Magellan Cloud and
determine how to support a number of users.

LBL CRD Chombo mid-range and user cloud opportunities
PI:Hans Johansen(ASCR)
Description:

The LBL CRD Applied Numerical Analysis Group (ANAG) would propose using our Chombo software
library as a test bed for the appropriateness of cloud platforms for scientific computing. Chombo is a
well-established parallel software library for supporting finite difference methods for a variety of scientific
computing applications. Chombo’s users benefit from adaptive refinement on block-structured grids and
highly-flexible cut-cell discretizations. The use of standard open-source tools and libaries allows Chombo to
run on desktops, midrange and leadership-class machines.

Objectives of exploring Chombo within Magellan would include: - Evaluating the use of virtual private
clusters of 40-1000 cores to support midrange scientific software development on large 2D or small 3D com-
putations, - Investigating Chombo performance on the new platform’s architecture (vs. desktop and NERSC
machines), and - Hosting external groups of collaborators in an environment that supports small-moderate
compute workloads.

Star workflows
PI:Jeff Porter(HEP)
Description:

STAR, a large collaboration running on PDSF, has used cloud services at EC2 to run production scale
simulation work. This was implemented by installing a grid resources in a virtualized environment. STAR
has also done tests with other virtualization models for production processes. We would like to explore these
models further on a dedicated system and, perhaps, leverage STAR resources local to NERSC (PDSF data
and NERSC HPSS) to expand cloud usage to more complicated User Analysis processes. Cloud services at
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NERSC could potentially provide us with a surge resource which would allow us to use NERSC resources
more efficiently.

Cloud Computing for Supernova Cosmology

PI:Rollin Thomas(HEP)

Description:

Mid-range scientific pipeline for spectrophotometric data processing/reduction (Nearby Supernova Fac-
tory and Palomar Transient Factory projects). Pipeline currently runs at CCIN2P3 but they no longer fully
satisfy our needs: This causes *scientists* to spend time adjusting code to the *imposed* environment rather
than discovering things. Usage: Dozens to hundreds of cores, depending on task.

Also VERY interested in science gateways to serve up the data to our collaboration and the public in
general; this is a high-profile project to build the next-generation data set for SN cosmology and Dark Energy
studies.

Interested in alternative approaches to using computer resources also — rather than using a batch-queue
system we are open to something more advanced, but uncertain whether Hadoop or MapReduce would work
with our software.

Interested in real-time processing of data from a remote spectrograph also, using a smaller version of the
above described pipeline. This would require guaranteed access at specific times, but would only require a
few CPUs.

Finally, I have an application for the data-driven analysis of supernova spectra — currently it runs on
franklin, but the structure doesn’t include a lot of barriers or synchronization (in fact the problem setup is
designed to be asynchronous and fault tolerant). This could take advantage of flash memory; but mostly I
have simply found that franklin does not really suit my needs. I would like to look into running this code on
a cloud computing environment, and also setting up a science gateway so that members of the astrophysics
community could submit their own spectra for analysis by my code. Usage: Hundreds of cores.

ATLAS combined interest in Cloud Computing

PI:Yushu Yao & Paolo Calafiura(HEP)

Description:

1. Compare the ATLAS Software performance on a virtualized cluster to the performance on PDSF.
Currently the LBL ATLAS group is running analysis jobs on the CHOS based PDSF cluster. ATLAS has
both I/O intensive (e.g. data analysis) and CPU intensive (e.g. simulation) jobs. They will provide a good
benchmark for testing the performance of virtualized clusters.

2. Test I/O Performance and Reliability of Flash Storage. ATLAS analysis jobs will require reading
large amount of data. These data are normally stored in disk arrays and shared for each node in the
cluster. Comparing the performance of SSD disk array to conventional disk array will be a valuable study,
especially when there is concurrent access of the same storage unit by a number of jobs (hundreds). Study
file system optimizations that fit SSD. Besides performance, reliability is another important aspect. Failed
disk replacement cost and power consumption are also important factors when making disk purchases.

3. Scalable ATLAS Tier3 Virtual Cluster Many smaller institutions have limited manpower to set up
and maintain a batch cluster. We are prototyping a Virtual Tier3 Cluster for ATLAS, where the user
(institution) can easily launch a cluster ready for ATLAS jobs. We will need a testbed for testing this
prototype in a larger scale, and to measure the performance and scalability of the Virtual Cluster. A lot of
research is needed for the infrastructure that provides these services. E.g. security, resource provisioning,
usage accounting (cpu, memory, io, storage, remote database access). Another aspect of the same problem
is that in many institutions a batch cluster will serve several very different scientific projects (like PDSF).
Virtualized clusters can help to reduce maintenance cost and consolidate usage.

4. From Desktop to Cloud Many complex scientific software systems like ATLAS need considerable effort
to setup a development or analysis environment. Virtualization has been proven to greatly simplify the
deployment of, not only the software itself, but also an working environment for code development and data
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analysis. One successful example is the CernVM project. Although development is done on a desktop, jobs
are normally sent to the GRID (or Cloud) for execution. A solution to seamlessly integrate the development,
deployment and job execution process is needed. This idea can be generalized to how can we use virtual-
ization to deploy a certified work environment to users for the work that needs human input. In this work
environment, how are data communicated with the cloud and other work environments. In the cloud, how
to handle events initiated from a work environment.

distributed computing utilizing BOINC for study of atmospheric waveguide in approximation
of trajectory of cosmic rays
PI:Andrew Gillette(Outside/Astro)
Description:

Scaling of Hadoop to work in a virtual machine environment in distributed processing.

MGTAXA metagenomic binning package on the cloud
PI:Andrey Tovchigrechko(Outside/Bio)
Description:

We have built a cloud image for MGTAXA metagenomic binning package ( http://andreyto.github.com/mgtaxa/
). The initial development of MGTAXA was supported by DOE funds (now it is supported by its own NSF
grant). We need to do larger scale testing and also porting from SGE/(share storage) to MapReduce. Ideally
the final image will become a publicly available resource on DOE cloud. Part of the NSF grant mandates
the creation of web gateway to MGTAXA. Magellan can become one of the backends.

Production Prototype for FSP
PI:Douglas McCune(FES)
Description:

This project will explore the feasibility of setting up a PTRANSP service for time dependent tokamak
simulations as a prototype for the Fusion Simulation Program (FSP) capacity production configuration. It is
likely that large-scale, high concurrency FSP simulations of full tokamak physics will be preceded by a large
number of small-scale simulations of entire discharges at the transport time-scale, using reduced models for
some of the fast phenomena. This is especially important for ITER, which requires a thorough scan of all
the anticipated plasma parameters and external drivers in order to predict its performance. Our application,
the predictive-TRANSP code (PTRANSP), will be typically run using 64 MPI processes for the fast ion
model (NUBEAM) and multiple concurrently running ion cyclotron wave heating modules, each one using
96 processes. The total number of MPI processes will depend on the type of discharge being studied although
it will remain between 64 to 1024 processes. The hope is to have the users access the cloud resources through
a PTRANSP ”science gateway”.

BIO-Cloud: Exploring the use of Cloud Computing for Genomic Workflows
PI:Ewa Deelman(Outside/Bio)
Description:

This project aims at porting existing and developing new workflow-based applications to the cloud envi-
ronment. We are currently working with scientists at the USC Medical School to enable their DNA analysis
to run on the USC campus cluster. As size of analysis increases (due to the increased amount of data coming
of the next generation sequencing machines) the need for additional resources, including those provided by
cloud environments increases. As part of this project we propose to port the existing RNA-seq application
onto the Magellan cloud. The application consists of several individual steps and can run in approximately
8 hours on 8 cores. We used the Pegasus Workflow Management System to run the application both at USC
and on the Amazon Cloud. We would like to compare the performance of the application on HPC resources
(at USC) and the different types of Clouds: Amazon and Magellan. Additionally, we plan to develop new
workflows that extend the RNA-seq workflow with additional analysis. These are being developed at part
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of an NIH Brain Atlas project. We would like to evaluate the performance of these new workflows on HPC
and Cloud resources. Depending on the allocation we receive on Magellan, we may also be able to do such
comparative studies for other applications, such as those in astronomy or earthquake science. For a list of
applications we work with please visit http://pegasus.isi.edu/applications.php

Quantum Systems with Cloud Computing
PI:Joseph Carlson(NP)
Description:

We simulate quantum systems in condensed matter, nuclear physics and cold atom physics. Many of these
simulations are conducted in a mode of loosely coupled random walks. Cloud computing could certainly be
used to perform independent calculations as properties of the system are varied, but we would also like to
investigate putting a large-scale simulation into this environment.

The smaller scale simulations are today typically run on local clusters of 100-200 cores. We could compare
performance on cloud computing with our local cluster. We are also interested in sharing code/data with
collaborators at other universities and national labs.

LUcloud - Cloud enabled LU decomposition for large electromagnetic problems
PI:Peter Messmer(BES)
Description:

Investigations of electromagnetic scattering properties of extended structures are at the core of many
scientific and engineering applications.

While a broad range of commercial and free tools exist, most of them do not target large HPC installations.
One of the main reasons is that the target users of such facilities, small engineering companies or research
departments, do not have access to such installations. Commonly, these users have access to some 128 cores
and factorization times of days to weeks are acceptable.

Enabling these researchers and engineers to access high performance computing resources in a cloud has
therefore the potential to save tremendous amounts of time.

We are therefore interested in utilizing clouds to provide users of such codes transparent access to high-
performance computing platforms. Most of the computational work involves LU factorizations of large,
dense linear systems. In some cases, the matrices are so large that out-of-core algorithms need to be used.
Being able to utilize some thousand cores instead of a hundred and having access to significantly faster mass
storage than regular disks will change the way these scientists can perform their research.

Most of this research will involve workflow investigations (data staging, execution control and monitor-
ing) and some preliminary runs for benchmark studies.

ICECUBE Simulations
PI:Spencer Klein(HEP)
Description:

Icecube is interested in alternative models for access to computing resources, such as use of virtual private
clusters reserved for the use of particular research groups for specific periods of time. Icecube workload is
unevenly distributed in time and the project could greatly benefit being able to quickly access additional
resources and virtualization would alleviate issues created by a fairly complex software environment that
makes it difficult to utilize grid resources at this point.

Satellite data processing in the cloud
PI:Deb Agarwal(HEP)
Description:

We are currently using the Microsoft Azure cloud to bring together 6 data products from the MODIS
satellite and reprojecting these products onto a 1km grid as needed. Then we calculate evapotransporation.
The input elements are images and the result will be produced as an image (HDF5). We are working with
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a scientist that would like to compute ET globally for the period covering the 10 years of data. We would
be interested in looking at porting this computation onto the magellan cloud. The problem is embarassingly
parallel so it is a good match with the cloud.

Cactus on the Cloud

PI:Erik Schnetter(HEP)

Description:

We develop and support the Cactus software framework that we are also using for the simulation of
Gamma-Ray Bursts and other astrophysical systems. Our interest in cloud computing includes increasing
the flexibility of supercomputing in several ways:

- We are researching ways in which access to HPC resources can be more flexible, e.g. to support
interactive debugging or on-line remote visualisation. Virtual machines, as available on clouds, may be an
important step in this direction.

- To increase scalability of future petascale simulations, we are researching ways of splitting off parts of
simulations that by construction cannot scale. Presumably these would benefit from running in multiple
instances on lower end architectures, e.g. for expensive post-processing stages of individual time steps.

- As some of our astrophysical calculations become less cutting edge, we are beginning to set up a science
gateway for binary black hole simulations. Our current intent focuses on teaching due to resource limitations;
with proper resources, we would extend this to support astrophysics research, and to include other physics
systems.

High resolution simulations of galaxy formation and evolution

PI:Joel Primack(HEP)

Description:

We propose to run 10 different simulations of galaxies with masses similar to the Milky Way. This will
give us enough statistics to understand what are the necessary conditions that makes galaxies analogs to
the Milky Way. We request a total of 100k cpu-hours in 80 cores (ten nodes) of the new linux cluster,
Magellan. This is an example of mid-range scientific computing that uses less than 1k cores. Moreover,
each simulation can run independently in a single node. Therefore, this project is well suitable for cloud
computing in Magellan. The code uses OPENMP and it needs a shared-memory environment addressing
10-20 Gb of ram per simulation. The same code has been used extensively on bassi, so this project can be
very useful for comparative performance tests between bassi and Magellan nodes.

(This project could alternatively use ten nodes on Hopper or Carver. More processors per node would be
even better, since the code scales perfectly to 16 processors per node on the Schirra IBM machine at NASA
Ames.)

Climate Data Analysis and Management

PI:John Wu, Alex Sim, Lavanya Ramakrishnan(BER)

Description:

The climate data analysis planned require high I/O performance. This I/O requirement is expressed in
two forms. It requires transfer of a large amounts of data from remote repositories, and the analysis program
typically read a large amount of data from disk into memory. The Hadoop setup can provide very high
aggregate I/O throughput, and is well suited for the planned data analysis activity. Some research activities
have been reported by our collaborators. Magellan will provide a larger platform for further studying the
software system used for parallel data analysis.

The initial software system is planned to use FUSE over HDFS to provide file access to the data analysis
algorithms. The FUSE abstraction doesn’t let Hadoop use data locality and may result in the analysis
computations to be performed on nodes that do not hold data. To provide local file accesses to the analysis
code, we plan to update the scheduler of the Hadoop system. We would like to test this prototype on
Magellan in the context of climate data analysis. This work will leverage our existing work on FastBit
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indexes, and can also benefit a number of other applications running on Magellan system that would benefit
from using the Hadoop file system.

The climate data analysis code relies on large data that resides on multiple sites including Livermore, Oak
Ridge and NERSC. Eventually the project will also benefit from using the ANI 100G link to transfer data
from these sites. This early prototype (with smaller data sets) will help us evaluate the use of technology
such as Hadoop file system in preparation for large scale analysis in the future.

Combinatorial electronic structure calculations

PI:Alan Aspuru-Guzik(BES)

Description:

We are interested in exploring HPC clouds as a complement to volunteer-based grid computing, an effort in
which we are working on with a considerable part of the Aspuru-Guzik research group (http://aspuru.chem.harvard.edu)
THE CLEAN ENERGY PROJECT: Our program will significantly advance our fundamental understanding
of materials design rules for the development of polymer-based solar cells. Instead of molecular design by intu-
ition or by experimental synthesis, we use of powerful theoretical techniques to search for ideal chemical com-
pound(s) with the adequate physical and chemical properties needed to generate clean and sustainable forms
of energy sources. Working together with IBM, we developed a screensaver (http://cleanenergy.harvard.edu),
which allows individual users anywhere in the world to contribute their idle computer time to perform elec-
tronic structure calculations on combinatorial libraries of molecular compounds suitable for organic solar
applications. The deployment of a world-wide distributed computational engine provides an avenue to ex-
plore the vast chemical space and identify lead compounds for the next generation of polymer-based solar
cells. Currently, advances in the field of computational modeling of materials have brought us closer towards
an accurate prediction of the photovoltaic properties of a given molecular material even before experimental
synthesis. In this study, we developed a cheminformatics approach that creates molecular libraries using
molecular descriptors, and converts them, in a second step, into an initial ensemble of three-dimensional
molecular configurations. The resulting Cartesian coordinates are subsequently used to generate input files
for the Q-Chem electronic structure software package. The combinatorially created molecular structures and
their respective electronic and optical properties as derived from first-principles electronic structure calcu-
lations will be used to deploy a database, which will be publicly available to the scientific community for
data mining. Ultimately, we hope to achieve a predictive power and provide insight to the experimentalists
into the design of molecular architectures that satisfy the high bar for practical devices: air-stable materials,
absorption profiles compatible with thesolar spectrum, and high charge-carrier transport characteristics.

Using Cloud Computing as a Means for Collaborative Computing

PI:Angelo Raymond Rossi()

Description:

My position is as a Senior Scientist for research computing at the University of Medicine and Dentistry
of New Jersey.

In addition to Medical, Dental, and Nursing Schools, etc., there is a Graduate School where researchers
are working on important problems in Biomedical research.

My job is to use Computational Chemistry at the intersection of experiment and computation to help
researchers understand their results.

I would like to be able to determine how Cloud Computing can be used in a collaborative environment
for Computational Chemistry, i.e. ”Collaborative Cloud Computing”. We have a smaller IBM iDataPlex
of 400 cores, and I can use the expertise gleaned from my experience using the Magellan hardware to help
researchers to enhance their collaborative abilities through the use of Cloud Computing.

The central thrust of my proposal is to determine whether or not Cloud Computing can be used as an
instrument to enhance collaborative research.

Items from the initial list of cloud computing investigations including ”science gateways” and easy access
to applications could be very useful in ”Collaborative Cloud Computing”
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Cloud Computing for Electromagnetic Particle-In-Cell Simulations
PI:Arno Candel(BES)
Description:

Comparative performance, especially for tightly coupled codes such as PIC.

Computational Biology, Statistics and Data Analysis
PI:Bill Cannon(Outside/Bio)
Description:

Both application of virtual machines and use of map-reduce programing paradigm for data analysis.

Large Workflow Monitoring
PI:Dan Gunter(ASCR)
Description:

Online monitoring and optimization of large workflows for complex scientific applications.

100G FTP: An Ultra-High Speed Data Transfer Service Over Next Generation 100 Gigabit
Per Second Network
PI:Dantong Yu(ASCR)
Description:

100G FTP is newly funded to design and develop an ultra high speed end-to-end file transfer protocol
and tool to move science data at a speed of 100 gigabit per second (Gbps) across the national scale 100Gbps
data network interconnecting research centers. This project is motivated by the data intensive applications’
need for novel data transfer technologies and automated tools that are capable of effectively utilizing avail-
able raw network bandwidth and intelligently assisting scientists in replicating a huge volume of data to
any desired location in a timely manner. The tool is based on a layered architecture to facilitate a modular
design for each component which can be flexibly added and customized in a ”plug-and-play” fashion only
when needed. The prototype 100G FTP tool will use the advanced Acadia 100G NIC to move data between
two DOE Magellan clouds at ANL and NERSC interconnected by the DOE 100Gbps ANI network testbed,
and provide the critical data moving layer to two DOE ARRA projects, i.e. Climate 100 and the Advanced
Network and Distributed Storage Laboratory. We are interested in using flash storage for data intensive
applications. We would like to access to the flash storage that offers substantially increased bandwidth and
IOPS (I/O operation rate), and decreased latency. We are also interested in the storage management system,
such as, Hadoop Distributed File System (HDFS) that is built on top of cloud computing models such as
Hadoop (MAP/Reduce).

Magnetic Fusion Energy Research: Expermeintal and Simulation
PI:David P. Schissel(FES)
Description:

I manage the Data Analysis Application Group at the DIII-D National Fusion Facility in San Diego. We
would like the opportunity to discuss the ideas in more detail. Thanks, David

Experimental: Can cloud computing be used to perform calculations that support an operating tokamak?
This calculations are time sensitive, yet require not a large number of processors. Today we run on clusters
with up to 70 cores.

Simulation: Clearly cloud computing can help here. Magnetic fusion simulations are of very different size
and complexity. Finding one to fit this model should be straightforward.

Comparative performance of scientific applications in cloud computing and traditional clus-
ter/supercomputing environments
PI:Eugene Chen(FES)
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Description:
Comparative performance of scientific applications in cloud computing and traditional cluster/supercomputing

environments.
Use of flash storage for data intensive applications.
Creation of ”science gateways” that use cloud computing to provide easy access to applications, databases

or automated workflows.

PI:Gheni Abla(FES)
Description:

I am interested in the creation of ”science gateways” that use cloud computing to provide easy access to
applications, databases or automated workflows.

Space Weather modelling
PI:Giovanni Lapenta(FES)
Description:

Running space weather services on cloud computing

Application of Cloud Computing for STAR simulation
PI:Jan Balewski(NP)
Description:

Simulation of response of the STAR detector to collisions of high energy proton or heavy ions requires
minimal input file, significant CPU per event, and resulting output file is of moderate size. The goal of this
study is to assess feasibility of such simulations in the Cloud Computing environment and transfer resulting
files to RCF computing facility

Economic viability of cloud computing resources for LBNL midrange computing needs
PI:Krishna Muriki(Outside)
Description:

We would like to run some of the LBNL midrange computational programs on the Cloud computing
resources offered by the Magellan project. Applications are picked from various divisions which are cur-
rently run on LBNL’s institutional cluster namely Lawrencium. Goal is to do performance comparisons of
these selected computational applications in cloud computing and traditional Infiniband cluster environment.

Data storage
PI:Mark Rosenberg(Outside)
Description:

In recent BCP planning it has become clear that tape restore times are too long for file service recovery.
I am looking for a way to mirror our CIFS file server in the cloud. After the disaster I would like to be

able to provide direct access to the stored files to Lab staff. Either web or CIFS access would work. There
are currently approximately 1000 accounts with 3 TB of data. These represent both home and shared
directories. We would need to be able to maintain and enforce the access rights to the data.

Comparative performance of scientific applications in cloud computing and traditional clus-
ter/supercomputing environments.
PI:Massimiliano Alvioli(Outside)
Description:

Comparative performance of scientific applications in cloud computing and traditional cluster/supercomputing
environments.
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Computational Prediction of Transcription Factor Binding Sites
PI:Mohammed AlQuraishi(BER)
Description:

There are two aspects of our project that may be suitable for cloud computing. First is that the paral-
lelism is typically ¡1k cores, more in the range of 100s. Second is that much of our analysis involves sequence
comparisons, i.e. string-related operations that are particularly suited for cloud APIs.

Impact of RDMA Efficiency on Cloud Computing
PI:Payman Zarkesh-Ha(Outside)
Description:

My main interest is in creating a test bench to measure the impact of RDMA efficiency between servers
and storage on cloud computing. More specifically, my focus is on the impact of the latency of high-speed
interconnects such as: HyperTransport or QuickPath.

Astrophysics Image Processing
PI:Peter Nugent(HEP)
Description:

I would like to extend the work I did on the SDSC DASH computer with flash storage for data bases and
image processing.

National Energy Modeling System
PI:Peter Schwartz(ASCR)
Description:

Our project would attempt to show that a complex program, parallel-NEMS, could be ported to cloud
computers. A superfast version of NEMS, would be of great interest. In addition, techniques involved in
porting the application would be widely applicable.

REALM
PI:Peter Schwartz(BER)
Description:

The realm project is an initiative between LBNL and the California Department of Water Resources to
develop multidimensional models for analyzing flow and water quality in the San Francisco Bay-Delta. Anal-
ysis of Bay-Delta management and design alternatives routinely involves numerous long, computationally
intense simulations. The potential applications require both MPI-based parallel computation and embarrass-
ingly parallel separate launches representing alternatives or data assimilation replicates. Agencies that study
the Bay-Delta (the state, water agencies, consultants and schools) are not able to independently maintain
the infrastructure required. We believe that cloud computing would offer an ideal environment, allowing
on-demand access to adequate computational capability.

Defects and Charge Transport in Materials for Energy Conversion and Storage
PI:Ram Devanathan(BES)
Description:

We plan to run some data intensive calculations using codes that are moderately parallel. We hope to
use this capability for molecular modeling as well as for quick turnaround on data analysis tasks that are not
highly parallel. We would like to benchmark the performance against existing resources to evaluate the suit-
ability of cloud computing for our future needs. This will help us evaluate, which types of simulations should
be done with massively parallel resources and which are more suitable for cloud computing. Turnaround
time and impact on researcher productivity will also be assessed.

Atomic resolution modeling of RNA motifs and protein structures
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PI:Rhiju Das(Outside/Bio)

Description:

My lab at Stanford (biochemistry and physics departments) seeks basic principles that will permit a
deep and predictive understanding of biomolecule structure. I have extensive experience in distributed com-
puting (Rosetta@home), human computation (FoldIt), and high performance cluster computing through
my postdoctoral work in David Baker’s lab at UW on the high resolution prediction of protein structures.
My new lab at Stanford has recently developed a deterministic, enumerative method that appears to give
unprecedentic accuracy for small RNA and protein motifs; we are gearing up for CASP10 (the community
wide blind prediction trials) this summer of 2010. One of our main efforts is to convert our calculation
from being queued by python scripts on Stanford’ BioX2 2000-core cluster to the Map/Reduce framework to
run on cloud architectures like Amazon EC2. We have run tests on several other clusters, including several
TeraGrid systems, and the latency is too high – this seems like a perfect case for a cloud vs. a standard
grid-based architecture. We are looking for an academic test-bed that would enable us to test our ideas at
low cost; that would inform the work of others searching for new paradigms for scientific computing; and
that eventually might be the back-end for a webserver for more general use by the biological community.
The NERSC Magellan seems like a superb fit!

Interface of data intensive grid applications to cloud resources

PI:Ruth Pordes, OSG Executive Director; Doug Olson, LBNL liason(NP)

Description:

Groups participating in OSG are investigating various aspects of virtualization and cloud computing and
these efforts are especially suitable to cooperation and collaboration with the Magellan project and well
positioned to leverage the strengths of the OSG production grid infrastructure with cloud resource mod-
els. The STAR experiment, collaborating with the Nimbus group at ANL, has utilized Amazon EC2 for
a science production run by deploying a virtual OSG compute element with several hundred cores as well
as testing other models of virtual resources at Clemson and Wisconsin. The Panda pilot-job framework is
currently providing a production science gateway for the ATLAS experiment and other science groups on
OSG. There is an effort to investigate an interface to virtualized resources that is interested in collaboration
with Magellan. The CMS experiment is also investigating technical issues and cost models for cloud com-
puting, with scientists at Vanderbilt testing the usability of the Monte Carlo production software stack. The
group at Clemson is investigating cloud aspects of deploying virtualized resources on a campus grid and can
provide valuable insights and examples of university researchers interfacing with a scientific cloud facility.
The Condor project has been interfaced to Amazon EC2 and developing capabilities in managing virtual
machines is very interested in adapting capabilities suitable for Magellan. The OSG Engagement group is
working with a variety of applications, some of whom may benefit from testing on virtualized cloud resources.
Given these interests by OSG groups and the OSG expertise in deploying a distributed infrastructure OSG
is very interested in collaborating on investigating the issues of interfacing grid services to cloud resources
and especially looking at data flows between the NERSC and ANL resources utilizing the ANI network. The
Advanced Network and Distributed Storage Laboratory (ANDSL) for Data Intensive Science is interested
in using the Magellan endpoints to deploy distributed storage solutions supported by OSG, and verify their
capabilities once the 100Gbps testbed becomes available.

Automatic Calibration of Astronomical Images

PI:Sam Roweis(Outside/Astro)

Description:

Use of distributed storage and computing to support a system which allows amateur scientists to con-
tribute data to a public archive which is robotically calibrated to ensure its scientific reliability.

Run climate models

PI:Shenjian Su(BER)
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Description:
Try to run climate models in Cloud Computing mode.

Performance Evaluation of On-Demand Provisioning of Data Intensive Applications
PI:Sriram Krishnan(Outside)
Description:

We would like to perform a detailed benchmarking effort for data intensive applications using the resources
provided by Magellan. This work will complement our work being performed on private and public cloud-
based environments using the NSF CluE facility and Amazon Web Services (AWS). We have already received
an allocation of resources under Amazon’s Educational program to perform this study. The benchmarking
work will focus on high resolution topographic datasets and tools that are provided by the OpenTopography
project (http://www.opentopography.org) at SDSC. Under the scope of this project, we wish to deploy DB2
and Hadoop on Magellan resources; install our benchmark data sets; and execute a number of benchmark
queries on these data sets, using both DB2 and Hadoop-based solutions for serving these data sets. In addi-
tion to delivering the benchmarking results, this work will also lead to working out the ”teething” troubles
of running parallel DB2 as well as the Hadoop parallel execution environment across the Magellan resources.
The goal of this project is to investigate whether a resource such as OpenTopography can be successfully
hosted on cloud-based resources. We anticipate that if we are to host OpenTopography ”on the cloud”, we
will need a high speed network connection between SDSC and the cloud (Magellan, in this case).

Use of flash storage for data intensive applications
PI:Wei-keng Liao(ASCR)
Description:

Parallel I/O, MPI-IO optimizations. Energy consumption optimization for hard-drive and flash-drive
hybrid storage systems.

Exploring cloud computing environment for fast biological sequencing applications
PI:Weikuan Yu(Outside)
Description:

Long-distance I/O, Map/Reduce, Flash storage

Transfer HPC applications to Cloud platform
PI:Yong Qin(FES)
Description:

We are trying to understand how the Cloud technology can benefit us. Thus we are trying to transfer
our current HPC applications to the Cloud platform and/or redesign algorithms to adopt the new platform.

52



Appendix B

Relevant Publications

53



Defining Future Platform Requirements for e-Science
Clouds

Lavanya Ramakrishnan *

lramakrishnan@lbl.gov
Keith R. Jackson *

krjackson@lbl.gov

Shane Canon +

scanon@lbl.gov
Shreyas Cholia +

scholia@lbl.gov
John Shalf +

jshalf@lbl.gov
*Advanced Computing for Science
Lawrence Berkeley National Lab

Berkeley, CA

+ NERSC
Lawrence Berkeley National Lab

Berkeley, CA

ABSTRACT
Cloud computing has evolved in the commercial space to
support highly asynchronous web 2.0 applications. Scien-
tific computing has traditionally been supported by central-
ized federally funded supercomputing centers and grid re-
sources with a focus on bulk-synchronous compute and data-
intensive applications. The scientific computing community
has shown increasing interest in exploring cloud comput-
ing to serve e-Science applications, with the idea of taking
advantage of some of its features such as customizable en-
vironments and on-demand resources. Magellan, a recently
funded cloud computing project is investigating how cloud
computing can serve the needs of mid-range computing and
future data-intensive scientific workloads. This paper sum-
marizes the application requirements and business model
needed to support the requirements of both existing and
emerging science applications, as learned from the early ex-
periences on Magellan and commercial cloud environments.
We provide an overview of the capabilities of leading cloud
offerings and identify the existent gaps and challenges. Fi-
nally, we discuss how the existing cloud software stack may
be evolved to better meet e-Science needs, along with the
implications for resource providers and middleware develop-
ers.
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1. INTRODUCTION
Cloud computing provides a new resource model where

multiple virtual servers hosted in data centers are used by in-
dividuals or groups, usually through a pay-as-you-go model.
Cloud computing provides an illusion of infinite computing
resources available on demand, i.e. in current cloud systems
resources are accessible to the user almost instantly, with
startup time of the instance imposing the only delays.

Cloud computing platforms are primarily used to serve the
needs of web 2.0 applications, whereas their use in scientific
communities is still being evaluated [9]. Different e-Science
groups including those in bioinformatics [13], astronomy [5]
and high energy physics have experimented with Amazon’s
infrastructure-as-a-service model and have also investigated
the use of Hadoop for programming loosely coupled applica-
tions. Early results indicate some performance degradation
in comparison to conventional batch-scheduled clusters. But
this also promises to be an avenue to address new categories
of scientific applications including data intensive science ap-
plications, on-demand/surge computing, and applications
that require customized software environments. This new
resource model will have a substantial impact on the busi-
ness model for future High Performance Computing (HPC)
centers in terms of how they provide services to the scientific
community and the evolution of the software infrastructure
necessary to manage those resources.

Magellan is a recently funded project, through DOE ASCR,
to investigate how the cloud computing business model can
be used to serve the needs of midrange computing and future
data-intensive computing workloads for the Office of Science
that are not served through DOE data center facilities to-
day. The distributed testbed infrastructure has been de-
ployed at Argonne Leadership Computing Facility (ALCF)
and the National Energy Research Scientific Computing Fa-
cility (NERSC). At NERSC, the testbed will consist of 1,440
Intel Nehalem quad-core processors (5,760 cores total).

There has been intense discussion on the characteristics of
clouds, along with their benefits and comparisons with grid
environments [1, 7]. However, comparatively little attention
has been devoted to defining the workload requirements,
business model, user management, scheduling, application
tools and security in the context of e-Science applications.
The latter topics are central to defining the role of cloud
computing in existing supercomputing centers and DOE’s
investment strategy for future computing infrastructure.
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Cloud computing encompasses a wide scope of technolo-
gies and offerings. In this paper, we specifically address the
solutions that are pertinent to e-Science applications - use of
virtualized environments and software tools that are useful
in these environments.

Section 2 defines a taxonomy of key scientific workloads
that might be served well through cloud environments based
on their application characteristics and associated business
model. Section 3 describes examples of e-Science workloads
that could benefit from existing cloud technologies. Sec-
tion 4 identifies gaps in the current cloud computing offer-
ings for target workloads. Section 5 revisits the cloud ser-
vice model and outlines the opportunities of an improved
software stack that better meets the needs of e-Science ap-
plications.

2. E-SCIENCE ENVIRONMENTS
Scientific explorations consist of a broad spectrum of ap-

plication codes that run from user desktops to supercomput-
ing centers, in areas such as nuclear physics, bioinformatics,
environmental sciences, etc. These applications have a var-
ied set of requirements and often have a need for unlimited
compute cycles and data storage.

2.1 Application Classes
In this section, we provide a high-level classification of

workloads in the scientific space based on their resource re-
quirements and delve into the details of why cloud comput-
ing is attractive to these application spaces.

Bulk-Synchronous Large-Scale Computations. These
are complex scientific codes generally running on large-scale
supercomputing centers across the nation. These are MPI
codes using a large number of processors (often in the or-
der of thousands) and may have long running jobs. These
jobs are serviced at supercomputing centers through batch
queue systems. Users wait in a managed queue to access
the resources requested, and their jobs are run when the re-
quired resources are available and no other jobs are ahead
of them in the priority list. Most supercomputing centers
provide archival storage and parallel file system access for
the storage and I/O needs of these applications.

Bulk-Synchronous mid-range. These applications run
at a smaller scale than the above jobs. There are a number
of codes that need tens to hundreds of processors. Some of
these applications run at supercomputing centers and back-
fill the queues. More commonly, users rely on small compute
clusters that are managed by the scientific groups themselves
to satisfy these needs.

Asynchronous massively independent. Some scien-
tific explorations are performed on the desktop or local clus-
ters and have asynchronous, massively independent compu-
tations. Even in the case of large-scale science problems, a
number of the data pre- and post-processing steps, such as
visualization, are often performed on the scientist’s desktop.
However the increased scale of digital data due to low cost
sensors and other technology [10] has resulted in the need
for these applications to scale to environments such as cloud
environments. The requirements of such applications are
similar to those of the internet applications that currently
dominate the cloud computing space, but with far greater
data storage and throughput requirements.

The Integrated Microbial Genomes (IMG) system hosted
at the DOE Joint Genome Institute (JGI) fits this category.

It supports analysis of microbial community metagenomes
in the integrated context of all public reference isolate mi-
crobial genomes. The content maintenance cycle for data
involves running BLAST for identifying pair-wise gene sim-
ilarities between new metagenome and reference genomes
where the reference genome baseline is updated with new
(approximately 500) genomes every 4 months. This process-
ing takes about 3 weeks on a Linux cluster with 256 cores.
The size of the databases is growing, it is important that
the processing can still be accomplished in a timely manner.
The primary computation in the IMG pipeline is BLAST, a
data parallel application that does not require communica-
tion between tasks and thus has similarities with traditional
cloud applications.

2.2 Usage model
A central component of cloud computing is the underlying

usage or business model. Currently, midrange computing
infrastructure consists of a large number of departmental
or PI (Principle Investigator)-owned clusters that are dis-
tributed across the DOE – some placed in machine rooms
and many housed in closets. The virtualization technology
that enables the cloud computing business model to suc-
ceed for Web 2.0 applications, could be used to create vir-
tual ”private clusters” within a shared resource that look,
for all practical purposes, to be identical to privately man-
aged PI-owned clusters. The premise is that carving up
machines from large-scale data centers enables substantial
cost-savings due to economies of scale and improved energy
efficiency compared to running a number of smaller clusters,
while retaining all of the benefits of exclusive control of the
software configuration and availability that PIs desire.

The model thus facilitates the outsourcing of resource
needs to external providers on a pay-as-you-go model instead
of maintaining local infrastructure. A number of major ven-
dors including IBM and HP, and more recently Amazon and
Microsoft have embraced this service model of operating
large clusters on behalf of external clients. In the context of
the application classes discussed above we describe relevant
usage models.

Private cluster. Some scientific users prefer to run their
own private clusters for a number of reasons. They often
don’t need the concurrency levels achievable at supercom-
puting centers and need guaranteed access to resources for
specific periods of time. For these needs to be satisfied in
cloud environments, we need to be able to provide guaran-
teed access to the cluster when needed. This matches the
level of service that motivates them to operate their own
private cluster.

Personalized environment. A number of scientific ap-
plications have strong OS version dependencies and need
environments that are consistent with local cluster or desk-
top environments. In these cases while users might not care
where the resources are located, they desire the flexibility
associated with custom software environments. The instant-
availability of the resource is not as critical to this class of
users as the strict control of the entire software environment
(down to the sub-revisions of the OS kernel and libraries),
and the throughput of the solution.

Science Gateways Users of well-defined computational
workflows often prefer to have simple web-based interfaces to
their application workflow and data archives. Web interfaces
enable easier access to resources by non-experts, and enable
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wider availability of scientific data for communities of users
in a common application area (e.g. Virtual Organizations).
In this case the underlying infrastructure is decoupled from
the user interface - scientists interface directly with their
workflows through the web. Applications become available
to users using the Software-as-a-Service model.

2.3 Application Requirements
Each of the current computational modes available to e-

Science applications has certain disadvantages that cloud
computing promises to address. We provide a brief overview
here of the needs of the applications.

Scalable Computational Capacity The scientific ex-
ploration process often requires a large number of runs with
different parameters and configurations. Supercomputing
centers are shared resources that often have long queue wait
times and policies on how many jobs a user might have in the
queue. In addition, users often have bursts in their resource
needs (e.g. close to deadlines), that might be unpredictable.
Such special access needs often require out-of-band discus-
sions with resource providers and a number of such requests
are not accommodated due to over-subscription of the re-
sources. Cloud computing promises the ability to get access
to unlimited resources (albeit at a cost) which is very at-
tractive to scientific users who have periodic surges in their
resource needs that can’t be satisfied through local or high
performance computing centers.

Scalable Computational Performance. Many dis-
tributed memory scientific applications depend heavily on
message passing libraries (MPI or GasNET) for inter-processor
communication. In particular, bulk synchronous applica-
tions are very sensitive to messaging latency and bandwidth.
In order to reduce latency and improve bandwidth, MPI-
oriented HPC systems typically use high-performance fab-
rics like Infiniband and use messaging technology that by-
passes the operating system to give direct access to the hard-
ware. Collective constructs in MPI applications, such as
barriers and reductions, are highly sensitive to subtle load-
imbalances. Therefore reducing random sources of noise in
the operating system (OS jitter) is critical for maintaining
scalable performance.

Consistent Software Environments. HPC systems
and, often, local cluster resources are shared environments
where users are affected by any software upgrades that might
occur at the sites. Compiler and library upgrades can cause
many unproductive hours for the scientist. Currently, users
either have to spend hours upgrading their software envi-
ronments or must explicitly run only on resources where
the environment is compatible with their needs. Thus user
groups are often unable to use available idle resources during
periods of surge due to software incompatibility.

Software distributions. A number of large-scale multi-
institution collaborations have common shared software codes.
The source code for these applications are distributed today
and each group then individually installs them on local re-
sources. Due to the variability in the software supported at
each site, configuring and reproducing the exact execution
state requires hours to days of work and coordination. Some
groups are investigating the use of virtual machine images
for distribution of all required software [3]. This would en-
able sites to boot the virtual machines at different sites with
minimal or no work involved with software management.

Programming model. Scientific computing facilities

mostly serve the needs of high-end compute intensive sci-
entific codes. But as digital data becomes more readily
available, there is an increasing need for scaling data inten-
sive science that has traditionally run on desktop machines.
Cloud computing works well with the MapReduce program-
ming model that promises to be useful for some applications
with a large amount of parallel data processing. For ex-
ample, the JGI IMG pipeline mentioned earlier can benefit
from a MapReduce framework where a number of sequence
comparisons are processed in parallel.

Data Storage and Data Management HPC systems
typically provide high-performance parallel file systems that
enable parallel coordinated writes to a shared filesystem with
high bandwidth and capacity. The file system also needs
to allow for access patterns where multiple clients concur-
rently write to the same file, which is not supported by
NFS based solutions. Parallel file systems like GPFS, Lus-
tre and Panasas are usually employed to meet these needs
and are often layered on top of high-end storage systems or
use specially designed hardware. Even with these capabil-
ity focused file systems and storage systems, data storage
and movement remain one of the most challenging aspects
of high-performance computing. In addition to the high-
performance file systems, HPC centers typically provide an
archival storage system to archive critical output and results.
These systems are geared towards storing many petabytes
of data in a reliable fashion. Many of these systems still
use tape for storage. This is both for its cost effectiveness
per byte and reliability. Cloud computing models will need
similar data storage and management options for scientific
applications to effectively use these environments.

3. CURRENT CLOUD SYSTEMS
We have worked with a number of applications and ex-

perimented with different cloud providers and technologies
available. We have run a number of high performance bench-
mark [8] and application codes on Amazon web services
to understand the performance implications of virtual ma-
chines. In addition, we have used Hadoop to manage the
BLAST computations in the JGI IMG pipeline and com-
pared its performance on different platforms including tra-
ditional HPC platforms, Amazon EC2 and the Yahoo M45
clusters [2]. In these sections we detail our experiences with
using these technologies for these application studies.

3.1 Hadoop
The Apache Hadoop project is an open-source software

that provides capabilities to harness commodity clusters for
distributed processing of large data sets through the MapRe-
duce [4] model.

The Hadoop streaming model allows one to create map
and reduce jobs with any executable or script as the mapper
and/or the reducer. This is the most suitable model for sci-
entific applications that have years of code in place capturing
complex scientific processes. The Hadoop framework does,
however, make assumptions about the data model (e.g., sin-
gle line inputs per process) that are not valid for scientific
applications. This requires re-engineering of the application
data used with Hadoop jobs.

The Hadoop File System (HDFS) is the primary storage
model used in Hadoop. HDFS is modeled after the Google
File system and has several features that are specifically
suited to Hadoop / MapReduce. Those features include ex-

56



posing data locality and data replication. Data locality is a
key aspect of how Hadoop achieves good scaling and perfor-
mance and Hadoop attempts to locate computation close to
the data. This is especially true in the Map phase which is
often the most I/O intensive phase. Data is replicated for
fault tolerance and to provide more opportunities to execute
computation near data. The data is transparently replicated
by the file system.

3.2 Amazon Web Services
Amazon Web Services is a very popular cloud comput-

ing platform today. Amazon provides a number of different
instance types in terms of its computational power for dif-
ferent pricing. We have run a number of benchmarks on the
platform and the high performance MPI applications tend
to experience a performance hit. Additionally, Amazon also
provides higher-level services such as Elastic Map reduce.
However our experience with elastic map reduce revealed
that applications that didn’t fit the traditional Hadoop data
model could not use the existing API.

The primary methods for data storage in Amazon EC2 are
S3 and Elastic Block Storage (EBS). S3 is a highly scalable
key based storage system that transparently handles fault
tolerance and data integrity. EBS provides a virtual storage
device that can be associated with an Elastic Computing
instance. S3 charges for space used per month, the volume of
data transferred and the number of metadata operations (in
1000 allotments). EBS charges for data stored per month.

Scientific experimentation often results in changes to code
and configuration, which may involve recreation of the vir-
tual machine image. To avoid that problem and to addition-
ally serve as the global file system needed for MPI jobs, we
used EBS on a single node containing our binary and input
data. This was then mounted through NFS on the rest of
the nodes.

3.3 Yahoo M45
The Yahoo M45 cluster is a shared Hadoop platform-as-a-

service cloud environment. The cluster resources are shared
amongst users using a fair-share scheduler. The goal of this
cluster is to provide a Hadoop MapReduce platform for data
parallel applications in the scientific research space. At the
time of writing, the cluster is comprised of 400 dual quad-
core Intel Xeon E5320 1.86GHz nodes with 6GB of memory
per node. Each node is configured to run 2 map tasks and
1 reduce task.

We did a performance analysis for the IMG metagenomics
computations using the BLAST application in this frame-
work and found that it was comparable to that of other tra-
ditional HPC platforms and Amazon EC2. Memory appears
to be the bounding factor for BLAST, since the genome
database must be loaded in memory. BLAST itself scales lin-
early with the size of the database but we hit a performance
cliff when the database size exceeds the available memory
size. Additionally, since our tests were run on a shared
Hadoop cluster, it was difficult to get consistent overall per-
formance numbers. The load on the system from other users
impacted our total time-to-solution.

The Yahoo! M45 system allowed us to identify impor-
tant bottlenecks and limitations in this problem space. In
order to make the M45 environment more suited to a cloud-
implementation of BLAST or similar memory intensive sci-
entific applications we would benefit from a) higher memory

limits in the software configuration, b) nodes with a large
amount of available physical memory (similar to the extra-
large instances on Amazon EC2 which have 15GB) c) ability
to perform reservations for on-demand computing giving us
more reliable throughput times for total time-to-solution.

4. GAP ANALYSIS
In the previous section, we detailed current cloud offer-

ings. Here we examine some of the gaps and challenges in
using existing cloud offerings directly for scientific comput-
ing.

4.1 Resource Provider Policies
Clouds promise an unlimited supply of resources on-demand.

While this was true in early days of cloud computing where
demand for resources was still ramping up, more recently
users have noticed that their requests have not been satis-
fied on providers such as Amazon EC2 due to insufficient
capacity. This situation is similar to current day super-
computing and grid resources that are often over-subscribed
and have long wait queues. Thus for the end-scientist cloud
computing as an unlimited supply of cycles tends to be less
promising. There is a need for differentiated levels of ser-
vice similar to Amazon’s current offerings but with advanced
resource request interfaces with specific QoS guarantees to
avoid users needing to periodically query to see if resources
have become available.

Portability. The vision of grid computing has been to
enable users to use resources from a diverse set of sites by
leveraging a common set of job submission and data man-
agement interfaces across all sites. However experiences re-
vealed that there were challenges due to different software
stacks and software compatibility issues. Virtualization fa-
cilitates software portability. Open source tools such as Eu-
calyptus [11] enable transition from local sites to Amazon
EC2, but cloud interfaces in general are diverse and spe-
cific to each site making it hard to easily use multiple sites.
In addition, cost of data movement to and especially from
the cloud tends to be very expensive, discouraging portabil-
ity. The data costs are also an issue for applications where
scientists would like to perform post-processing on their end-
desktop or local clusters, or would like to share their output
data with other colleagues.

Cost. Today’s cloud providers have a pay-as-you-gomodel
for cloud resources. Cloud computing essentially enables
anyone with a credit card to get access to resources. However
infrastructure needs for scientific computing are either ad-
dressed through large upfront grants for equipment and/or
through peer-reviewed allocations on supercomputing re-
sources. Credit card transactions for resources don’t fit into
the current budget model at research institutions. In addi-
tion, PIs often have to distribute or carve out some percent-
age of their entire allocation to different users which cannot
be accomplished in today’s cloud computing scenarios. In
addition, providers such as Amazon EC2 provide a plethora
of options (e.g., spot instances, reserved instances, etc). un-
der different pricing models. The diversity and unlimited
scope of the scientific processes necessitates a runtime cost-
benefit evaluation with respect to these offerings. Thus, we
need to revisit institutional policies and software frameworks
that can capture these policies to spearhead cloud comput-
ing adoption for e-Science.
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4.2 Application Performance
Scientific applications have fairly large memory, compute,

data and network needs. Our experiences with running Blast
on the Yahoo! M45 cluster pushed us against some of these
limits. For example, Blast performance scales linearly with
the size of data, and is bound by the available physical mem-
ory - once the search database can no longer fit into physical
memory we notice a sharp performance drop-off.

The traditional synchronous applications such as MPI per-
form poorly on virtual machines and have a huge perfor-
mance overhead. Application codes with minimal or no
synchronization, modest I/O requirements, with large mes-
sages or very little communication tend to perform well in
cloud virtual machines. Traditional cloud computing plat-
forms are designed for applications where there is little or
no communication between individual nodes and where ap-
plications are less affected by failures of individual nodes.
This assumption breaks down for large-scale synchronous
applications.

In general cloud providers need to build systems that can
meet the more intensive requirements of scientific comput-
ing. The standard commercial offerings might not be com-
pletely suitable for scientific needs out of the box, and at
the very least, seem to require a fair amount of initial setup
to meet the needs of science applications.

Cloud providers such as Amazon EC2 provide simple web
service APIs for access and setup of resources. However run-
ning on Amazon EC2 often requires creating customized im-
ages, determining how resources are managed, implementing
fault tolerance, etc. This requires a fair amount of system
administrator experience. Similarly Hadoop applications re-
quire a fair amount of development experience. Thus there
is a need for developing application tools that exist above
these current offerings that account for the needs of the sci-
ence and enable easier access to cloud resources.

Additionally in the cloud model, time-to-solution is a more
critical metric than individual node performance. Scalability
is achieved by throwing more nodes at the problem. How-
ever, in order for this approach to be successful for e-Science,
it is important to understand the setup and configuration
costs associated with porting a scientific application to the
cloud - this must be factored into the overall time-to-solution
metrics in resource selection and management decisions.

4.3 Data management
As discussed earlier, scientific applications have a number

of data and storage needs. Synchronized applications need
access to parallel file systems. There is also a need for long-
term data storage. None of the current cloud storage meth-
ods resemble the high-performance parallel file systems that
HPC applications typical need. Hadoop is optimized such
that applications can benefit from data locality in the under-
lying HDFS system. This requires that Hadoop applications
are written to be able to store and retrieve data from HDFS.
Thus while applications can leverage the features of Hadoop
for task farming and coordination of tasks, rewriting legacy
scientific applications for use in cloud environments is often
infeasible and impractical. File system modules have been
written for Linux that allow access to HDFS through the
standard VFS layer. The FUSE interface takes VFS request
from the kernel and executes them in user space and this
results in a performance overhead.

5. REVISITING THE CLOUD MODEL
The goal of the Magellan project is to evaluate possi-

ble solutions for cloud computing for science. In this sec-
tion, we revisit the challenges and opportunities facing re-
source providers and middleware developers in providing
next-generation services.

Resource Provider Model. Resource providers serv-
ing the e-Science community need to support a diverse set
of models to accommodate different user needs. For ex-
ample, synchronous applications often need access to non-
virtualized resources for the best performance. Similarly as
sites support more data intensive science, there is a need
for frameworks such as Hadoop. Magellan will support pro-
visioning through batch queue (MOAB) systems, cloud so-
lutions such as Hadoop, and Eucalyptus, as well as access
to Hadoop over batch queue systems using Hadoop On De-
mand(HOD).

Virtual machines do not have any persistent state or shared
file systems, requiring sites to develop solutions that meet
the storage needs of the end user. Resource provider sites
need a) shared file systems such as GPFS or NFS accessible
across all nodes allocated to the end user, that can be used
to store persistent information across virtual machines and
b) archival storage for long term storage of data.

Currently in supercomputing centers, the sites manage
the operating system and middleware that is needed across
multiple groups. Users compile and install their applications
on specific systems (often with help from site personnel).
As we move to the cloud computing model, sites must pro-
vide tooling and support for managing a diverse set of ker-
nels and operating systems that required by specific groups.
The clear separation of responsibilities for software upgrades
and operating system patches no longer exists, and sites will
need mechanisms to bridge the gap between supporting user-
supported images and site security policies.

A cloud system where users have complete control of their
images, has certain implications on site security policies.
Additional checks and mechanisms are needed to protect
critical infrastructure services (e.g. DNS, file servers) on
the sites, ensure isolation between different virtual machines,
and defend against malicious outgoing and incoming traffic.

We need monitoring and dynamic allocation policies that
can load-balance between clusters of different types and pro-
vide guaranteed Quality of Service to users of all resource
types. In addition to the performance needs of the appli-
cation, there is a need for tools to manage fault tolerance
and reliability of the virtual machines. Virtual machine mi-
gration [12] has been proposed as a way to provide higher
quality of service especially during planned upgrades and
maintenance cycles.

Software Stack. Software stacks supporting distributed
scientific applications has largely evolved in the context of
grid computing. The software stack can be categorized into
these primary layers a) End-user portal interfaces or science
gateways b) Coordination services layer that coordinates un-
derlying resources for efficient and reliable execution c) Re-
source management services that interface directly with the
underlying resources

Cloud computing addresses the portability of the software
stack, a known issue with current day grid systems. Cloud
computing for e-Science needs a similar set of software tools
to harness and coordinate underlying resources. Cloud com-
puting technologies provide additional features that greatly
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simplify some of the known challenges with existing soft-
ware stacks, and also provides additional challenges of re-
source coordination. Here we present a vision for a cloud
computing software stack for e-Science that mitigates some
of the known problems and builds on existing commercial
products.

Batch queue systems such as Moab, PBS, etc provide cus-
tomizable policy points and algorithms to control scheduling
of requests and resources. Similarly, there is a need for pol-
icy points in the cloud infrastructure and the ability to store
and service requests when resources cannot be allocated im-
mediately. On top of the basic resource management ser-
vices, there are a number of coordination services available
in cyber-infrastructure environments today. These include
grid services for job submission and data transfer, applica-
tion services that coordinate the application specific setup
and execution, data replication services, meta-scheduling
services etc. In cloud computing we need a number of similar
tools and services. These tools must manage the underlying
resource procurement, and apply any runtime customization
needed in the virtual machine (e.g. bringing up specific ser-
vices within the instance). We need monitoring services and
the ability to dynamically grow and shrink resource hold-
ings without impacting the application. Additionally, we
need tools to manage job and data coordination, execution
and monitoring.

Moving higher up in the software stack, a class of users
will expect to interface with their underlying applications
through web-based science gateways, so that they are re-
moved from the infrastructure level details. Applications
must then be accessed through a middleware layer that can
expose traditional science applications as web services.

In order to make scientific computing more accessible, and
to allow for a faster overall time-to-solution, it is impor-
tant to have simple and robust interfaces that are seam-
lessly integrated with the applications and cloud infrastruc-
ture. Given the nature of the cloud, and its close coupling
with web technologies, these interfaces must leverage exist-
ing http based protocols. REST [6] (Representational State
Transfer) is gaining wide adoption as the underlying mech-
anism for building these interfaces. REST allows one to
expose resources by using the existing http protocol layer.
It creates a very simple and powerful means to access un-
derlying resources using a combination of URIs and http
verbs.

Most cloud providers including Amazon, Microsoft, Google,
etc., are striving to make their interfaces RESTful. Grid
technologies, which are similar in spirit to the cloud have
been saddled by more heavyweight protocols and technolo-
gies like WSDL and SOAP, limiting overall usability. Using
simple REST based APIs makes it very easy to add powerful
web 2.0 functionality to science applications. Looking for-
ward, this will allow users to mash-up disparate data sources
across the cloud because everything is essentially just a URI.

6. CONCLUSIONS
Cloud computing promises to be an alternative approach

for midrange and data intensive e-Science applications. Scal-
able parallel performance is achievable on these platforms
for application codes with modest I/O requirements and
minimal or no synchronization and communication. How-
ever, existing cloud offerings in the commercial space do not
completely meet the needs of these applications. Currently,

running a particular application on the cloud requires sub-
stantial understanding and assembly of the cloud computing
technologies. This paper summarizes these gaps and revisits
the service model both in the context of providers as well as
the software stack. There is a need for differentiated service
levels, hardware platforms tailored to scientific applications,
and higher level software tools that can manage the com-
plexities of the underlying technology fabric.
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Abstract—Cloud computing has seen tremendous growth,
particularly for commercial web applications. The on-demand,
pay-as-you-go model creates a flexible and cost-effective means
to access compute resources. For these reasons, the scientific
computing community has shown increasing interest in exploring
cloud computing. However, the underlying implementation and
performance of clouds are very different from those at traditional
supercomputing centers. It is therefore critical to evaluate the
performance of HPC applications in today’s cloud environments
to understand the tradeoffs inherent in migrating to the cloud.
This work represents the most comprehensive evaluation to date
comparing conventional HPC platforms to Amazon EC2, using
real applications representative of the workload at a typical
supercomputing center. Overall results indicate that EC2 is six
times slower then a typical mid-range Linux cluster, and twenty
times slower then a modern HPC system. The interconnect on
the EC2 cloud platform severely limits performance and causes
significant variability.

I. INTRODUCTION

Cloud computing has emerged as an important paradigm
for accessing distributed computing resources. Commercial
providers such as Amazon, Rackspace, and Microsoft, all offer
environments for developing and deploying applications in the
cloud. Several groups have reported studies of the applicability
of these environments for scientific computing. While it has
been shown that these environments are suitable for some
classes of scientific applications, it is equally important to
understand performance for the broader array of applications
that currently run at major supercomputing centers. This is
because cloud computing, in one form or another, has been
suggested as a potential platform for supporting mid-range
scientific computing workloads that play a vital and growing
role in basic research across all scientific disciplines [1].

This paper explores the performance of a commercial cloud
environment, the Amazon Elastic Compute Cloud (EC2) [2],
by analyzing a series of high-performance computing (HPC)
application benchmarks that represent a broad cross-section of
a typical workload at a major supercomputing center.

While building on our previous efforts [3], [4], [5], [6]
and complementing several other related studies [7], [8], [9],
[10], the unique contribution of this work is that it presents
the broadest evaluation to date of application performance
on cloud computing platforms. Our application suite includes
a diversity of numerical methods and data-structure repre-
sentations in the areas of climate, materials science, fusion,
accelerator modeling, astrophysics, and quantum chromody-
namics. In addition to simply recording the performance of the
applications we also instrument the runs using the Integrated
Performance Monitoring (IPM) [11] framework. This allows
us to determine, in a non-pertubative manner, the amount
of time an application spends computing and communicating
using MPI, which provides insight into which aspects of the
underlying architecture are affecting performance the great-
est. Additionally, our approach includes a well-documented
method for summarizing achieved, application-level perfor-
mance based on a simple aggregate measure that expresses
useful potential of the systems considered.

Our evaluation compares a diverse set of platforms that
range from fully-integrated HPC systems such as a Cray
XT4, to two commodity Linux/Infiniband clusters, to the
commercial Amazon EC2 cloud environment. These systems
cover a spectrum of component customization, integration,
energy efficiency, and other characteristics that arise from
varying workload orientations.

We have chosen the Amazon EC2 web service as a cloud
platform because of its popularity, and because it is broadly
representative of mainstream cloud environments that are
based on some form of hardware virtualized machine instances
interconnected by a commodity ethernet communication fab-
ric. Recently several companies have announced custom cloud
environments for the HPC community. Penguin computing
has announced their Penguin Computing on Demand (POD)
product [12]. POD offers non-virtualized access to the un-
derlying hardware, and supports both gigabit ethernet and
DDR Infiniband network interconnects. SGI is now offering a
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HPC cloud called Cyclone [13]. Like POD, Cyclone offers
non-virtualized access to the hardware, and supports high-
performance network interconnects. These offerings aim to
provide a complete HPC solution including high-bandwidth
storage, optimized HPC applications, and professional ser-
vices. Our paper does not examine these specialized HPC
offerings, but instead focuses on the performance of the
(currently) more common virtualized cloud environments.

Section II describes the methods used in this study, includ-
ing the machines used and the benchmarks run. Section III
discusses the performance of the benchmarks and compares
the IPM profile from the EC2 with that of a science-oriented
commodity cluster. Section IV describes the tools used, and
the impediments encountered in attempting to benchmark EC2
performance. Section V describes related work, and Section VI
offers our conclusions.

II. METHODS

A. Machines Used In Study

All results were obtained during normal, multi-user, pro-
duction periods on all machines.

1) Carver: is a 400 node IBM iDataPlex cluster located
at the National Energy Research Scientific Computing Center
(NERSC), which is part of Lawrence Berkeley National Lab-
oratory (LBNL). It has quad-core Intel Nehalem processors
running at 2.67 GHz, with dual socket nodes and a single
Quad Data Rate (QDR) IB link per node to a network that is
locally a fat-tree with a global 2D-mesh. Each node has 24 GB
of RAM (3 GB per core). All codes compiled on Carver used
version 10.0 of the Portland Group suite and 1.4.1 of Open
MPI.

2) Franklin: is a 9660 node Cray XT4 supercomputer and
is also located at NERSC. Each XT4 compute node contains
a single quad-core 2.3 GHz AMD Opteron ”Budapest” pro-
cessor, which is tightly integrated to the XT4 interconnect
via a Cray SeaStar-2 ASIC through a 6.4 GB/s bidirectional
HyperTransport interface. All the SeaStar routing chips are
interconnected in a 3D torus topology, where each node has
a direct link to its six nearest neighbors. Each node has 8 GB
of RAM (2 GB per core). Codes were compiled with the
Pathscale (MAESTRO) and Portland Group version 9.0.4 (all
others) compilers.

3) Lawrencium: is a 198-node (1584 core) Linux cluster
operated by the Information Technology Division at LBNL.
Each compute node is a Dell Poweredge 1950 server equipped
with two Intel Xeon quad-core 64 bit, 2.66GHz Harpertown
processors, connected to a Dual Data Rate (DDR) Infiniband
network configured as a fat tree with a 3:1 blocking factor.
Each node contains 16 GB of RAM (2 GB per core). Codes
were compiled using Intel 10.0.018 and Open MPI 1.3.3.

4) Amazon EC2: is a virtual computing environment that
provides a web services API for launching and managing
virtual machine instances. Amazon provides a number of dif-
ferent instance types that have varying performance character-
istics. CPU capacity is defined in terms of an abstract Amazon
EC Compute Unit. One EC2 Compute Unit is approximately
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Fig. 1. Virtual Cluster Architecture

equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. For our tests we used the m1.large and m1.xlarge
instances. The m1.large instance type has four EC2 Compute
Units, two virtual cores with two EC2 Compute Units each,
and 7.5 GB of memory. The m1.xlarge instance type has
eight EC2 Compute Units, four virtual cores with two EC2
Compute Units each, and 15GB of memory. The nodes are
connected with gigabit ethernet. To ensure consistency, the
binaries compiled on Lawrencium were used on EC2.

All of the nodes are located in the US East region in
the same availability zone. Amazon offers no guarantees on
proximity of nodes allocated together, and there is significant
variability in latency between nodes.

In addition to the variability in network latency, we also see
variability in the underlying hardware the virtual machines are
running on. By examining /proc/cpuinfo we are able to identify
the actual CPU type of the un-virtualized hardware. In our
test runs, we identified three different CPU’s: the Intel Xeon
E5430 2.66GHz quad-core processor, the AMD Opteron 270
2.0GHz dual-core processor, and the AMD Opteron 2218 HE
2.6GHz dual-core processor. We have no control over which
underlying hardware our virtual machines are instantiated on.
Thus, we almost always end up with a virtual cluster running
on a heterogeneous set of processors. This hetrogeneneity also
meant we were unable to use any of the processor specific
compiler options.

Before we could begin our study, we had to address the
major differences between the Amazon Web Services environ-
ment and that at a typical supercomputing center. For example,
almost all HPC applications assume the presence of a shared
parallel filesystem between compute nodes, and a head node
that can submit MPI jobs to all of the worker nodes. Running
these applications in the cloud requires either that the features
of a typical HPC environment are replicated in the cloud, or
that the application is changed to accommodate the default
configuration of the cloud.

For this paper we chose to replicate a typical HPC cluster
environment in the cloud by creating virtual clusters [14], [15].
We used a series of Python scripts to configure a file server, a
head node, and a series of worker nodes. The head node could
submit MPI jobs to all of the worker nodes, and the file server
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provided a shared filesystem between the nodes. This setup is
illustrated in Figure 1.

To implement the shared filesystem, we attached an Amazon
Elastic Block Store (EBS) [16] device to the fileserver virtual
machine. EBS provides a block level storage volume to
EC2 instances that persists independently from the instance
lifetimes. On top of the EBS volume we built a standard Linux
ext3 file system, that was then exported via NFS to all of the
virtual cluster nodes.

B. Applications Used In Study

A supercomputer center such as NERSC typically serves
a diverse user community. In NERSC’s case the commu-
nity contains over 3,000 users, 400 distinct projects and is
comprised of some 600 codes that serve the diverse science
needs of the DOE Office of Science research community.
Abstracting the salient performance-critical features of such
a workload is a challenging task. However, significant work-
load characterization efforts have resulted in a set of of
full application benchmarks that span a range of science
domains, parallelization schemes, and concurrencies, as well
as machine-based characteristics that influence performance
such as message size, memory access pattern, and working
set sizes. These applications form the basis for the Sustained
System Performance (SSP) metric, which better represents
the effectiveness of a system for delivered performance on
applications rather than peak FLOP rates [17].

As well as being representative of the DOE Office of
Science workload, some of these applications have also been
used by other federal agencies as they represent significant
parts of their workload. MILC and PARATEC were used by
the NSF, CAM by NCAR and GAMESS by the NSF and DoD
HPCMO. The representation of the methods embodied in our
benchmark suite goes well beyond the particular codes em-
ployed. For example, PARATEC is representative of methods
that constitute one of the largest consumer of supercomputing
cycles in computer centers around the world [3]. Therefore,
although our benchmark suite was developed with the NERSC
workload in mind, we are confident that it is broadly represen-
tative of the workloads of many supercomputing centers today.
More details about these applications and their computational
characteristics can be found in Ref. [18] (as well as in the
references cited here).

The typical problem configurations for these benchmarks
are defined for much larger ”capability” systems, so we had
to construct reduced size problem configurations to target the
requirements of mid-range workloads that are the subject of
this study. For example, many of the input configurations were
constructed for a system acquisition (begun during 2008) that
resulted in a 1-PetaFlop peak resource that will contain over
150,000 cores - considerably larger than it is possible to run in
todays commercial cloud infrastructures. Thus, problem sets
were modified to use smaller grids and concomitant concurren-
cies along with shorter iteration spaces and/or shorter simu-
lation durations. Additionally we also modified the problem

configurations to eliminate any significant I/O because I/O
performance is beyond the scope of this work.

Next we describe each of the applications that make up our
benchmarking suite, describe the parameters they were run
with, and comment upon their computation and communica-
tion characteristics.

1) CAM: The Community Atmosphere Model (CAM) is
the atmospheric component of the Community Climate System
Model (CCSM) developed at NCAR and elsewhere for the
weather and climate research communities [19], [20]. In this
work we use CAM v3.1 with a finite volume (FV) dynamical
core and a ”D” grid (about 0.5 degree resolution). In this case
we used 120 MPI tasks and ran for 3 days simulated time (144
timesteps).

CAM uses a formalism effectively containing two different,
two-dimensional domain decompositions, one for the dynam-
ics that is decomposed over latitude and vertical level and
the other for remapping that is decomposed over longitude-
latitude. Optimized transposes move data from the program
structures between these decompositions. CAM is character-
ized by relatively low computational intensity that stresses
on-node/processor data movement and relatively long MPI
messages that stress interconnect point-to-point bandwidth.

2) Gamess: The GAMESS (General Atomic and Molecular
Electronic Structure System) code from the Gordon research
group at the Department of Energy Ames Lab at Iowa
State University contains various important tools for ab-initio
quantum chemistry calculations. The benchmark used here
calculates the B3LYP DFT energy and gradient for a 43 atom
molecule and runs on 64 cores. Gamess is the only benchmark
for which no problem size scaling was performed.

GAMESS uses an SPMD approach but includes its own
underlying communication library, called the Distributed Data
Interface (DDI), to present the abstraction of a global shared
memory with one-side data transfers even on systems with
physically distributed memory. On the cluster systems in-
cluded here GAMESS was run using socket communication.
On the XT4 an MPI implementation of DDI is used in which
only one-half of the processors allocated compute while the
other half are essentially data movers. GAMESS is character-
ized by considerable stride-1 memory access - which stresses
memory bandwidth - and interconnect collective performance.

3) GTC: GTC is a fully self-consistent, gyrokinetic 3-
D Particle-in-cell (PIC) code with a non-spectral Poisson
solver [21] . It uses a grid that follows the field lines as they
twist around a toroidal geometry representing a magnetically
confined toroidal fusion plasma. The version of GTC used
here uses a fixed, 1-D domain decomposition with 64 domains
and 64 MPI tasks. The benchmark runs are for 250 timesteps
using 10 particles per grid cell (2 million grid points, 20
million particles). Communications at this concurrency are
dominated by nearest neighbor exchange that are bandwidth-
bound. The most computationally intensive parts of GTC
involve gather/deposition of charge on the grid and particle
”push” steps. The charge deposition utilizes indirect address-
ing and therefore stresses random access to memory.
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TABLE I
HPCC PERFORMANCE

Machine DGEMM STREAM Latency Bandwidth RandRing Lat. RandRing BW HPL FFTE PTRANS RandAccess
Gflops GB/s µs GB/s µs GB/s Tflops Gflops GB/s GUP/s

Carver 10.2 4.4 2.1 3.4 4.7 0.30 0.56 21.99 9.35 0.044
Franklin 8.4 2.30 7.8 1.6 19.6 0.19 0.47 14.24 2.63 0.061

Lawrencium 9.6 0.70 4.1 1.2 153.3 0.12 0.46 9.12 1.34 0.013
EC2 4.6 1.7 145 0.06 2065.2 0.01 0.07 1.09 0.29 0.004

4) IMPACT-T: IMPACT-T (Integrated Map and Particle
Accelerator Tracking Time) is an object-oriented Fortran90
code from a suite of computational tools for the prediction
and performance enhancement of accelerators. It includes
the arbitrary overlap of fields from a comprehensive set of
beamline elements, and uses a parallel, relativistic PIC method
with a spectral integrated Green function solver. A two-
dimensional domain decomposition in the y-z directions is
used along with a dynamic load balancing scheme based on
domain. Hockneys FFT algorithm is used to solve Poissons
equation with open boundary conditions. The problems chosen
here are scaled down quite considerably from the official
NERSC benchmarks, in terms of number of particles and grid
size (4X), 2-D processor configuration (64 cores instead of
256 and 1,024), and number of time steps run (100 instead
of 2,000). IMPACT-T performance is typically sensitive to
memory bandwidth and MPI collective performance. (Note
that although both GTC and IMPACT-T are PIC codes, their
performance characteristics are quite different.)

5) MAESTRO: MAESTRO is used for simulating astro-
physical flows such as those leading up to ignition in Type Ia
supernovae. Its integration scheme is embedded in an adaptive
mesh refinement algorithm based on a hierarchical system of
rectangular non-overlapping grid patches at multiple levels
with different resolution; however, in this benchmark using
MAESTRO the grid does not adapt. A multigrid solver is
used. Parallelization is via a 3-D domain decomposition in
which data and work are apportioned using a coarse-grained
distribution strategy to balance the load and minimize com-
munication costs. The MAESTRO communication topology
pattern is quite unusual and tends to stress simple topology
interconnects. With a very low computational intensity the
code stresses memory performance, especially latency; its
implicit solver technology stresses global communications;
and its message passing utilizes a wide range of message sizes
from short to relatively moderate. The problem used was the
NERSC-6 ”Medium” case (512 X 512 X 1024 grid) on 256
cores but for only 3 timesteps. This problem is more typically
benchmarked on 512 cores for 10 timesteps.

6) MILC: This code represents Lattice Computation that
is used to study Quantum ChromoDynamics (QCD), the
theory of the sub-atomic ”strong” interactions responsible for
binding quarks into protons and neutrons and holding them
together in the nucleus. QCD discretizes space and evaluates
field variables on sites and links of a regular hypercube
lattice in four-dimensional space time. It involves integrating
an equation of motion for hundreds or thousands of time

steps that requires inverting a large, sparse matrix at each
integration step. The sparse, nearly-singular matrix problem is
solved using a conjugate gradient (CG) method and many CG
iterations are required for convergence. Within a processor,
the four-dimensional nature of the problem requires gathers
from widely separated locations in memory. The inversion
by CG requires repeated three-dimensional complex matrix-
vector multiplications, which reduces to a dot product of three
pairs of three-dimensional complex vectors. Each dot product
consists of five multiply-add operations and one multiply.
The parallel programming model for MILC is a 4-D domain
decomposition in which each task exchanges data with its eight
nearest neighbors as well as participating in the all-reduce calls
with very small payload as part of the CG algorithm. MILC is
extremely dependent on memory bandwidth and prefetching
and exhibits a high computational intensity.

In this work we use a 32×32×16×18 global lattice on 64
cores with 2 quark flavors, four trajectories and eight steps per
trajectory; this results in over 35,000 CG iterations per run.
MILC benchmarking at NERSC uses up to 8,192 cores on a
643×144 grid with 15 steps per trajectory.

7) Paratec: PARATEC (PARAllel Total Energy Code)
performs ab initio Density Functional Theory quantum-
mechanical total energy calculations using pseudo-potentials, a
plane wave basis set and an all-band (unconstrained) conjugate
gradient (CG) approach. Part of the calculation is carried out
in Fourier space; custom parallel three-dimensional FFTs are
used to transform the wavefunctions between real and Fourier
space.

PARATEC uses MPI and parallelizes over grid points,
thereby achieving a fine-grain level of parallelism. The real-
space data layout of wave-functions is on a standard Carte-
sian grid. In general, the speed of the FFT dominates the
runtime, since it stresses global communications bandwidth,
though mostly point-to-point, using relatively short messages.
Optimized system libraries (such Intel MKL or AMD ACML)
are used for both BLAS3 and 1-D FFT; this results in high
cache reuse and a high percentage of per-processor peak
performance.

The benchmark used here is based on the NERSC-5 input
that does not allow any aggregation of the transpose data. The
input contains 250 Silicon atoms in a diamond lattice con-
figuration and runs for 6 conjugate gradient iterations. More
typically NERSC uses a 686-atom system with 20 conjugate
gradient iterations run on 1024 cores for benchmarking. A real
science run might use 60 or more iterations.
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Fig. 2. Runtime of each application on EC2, Lawrencium and Franklin relative to Carver.

8) HPCC: In addition to the application benchmarks dis-
cussed above, we also ran the High Performance Computing
Challenge (HPCC) benchmark suite [22]. HPCC consists of
seven synthetic benchmarks: three targeted and four complex.
The targeted synthetics are DGEMM, STREAM, and two
measures of network latency and bandwidth. These are micro-
kernels which quantify basic system parameters that separately
characterize computation and communication performance.
The complex synthetics are HPL, FFTE, PTRANS, and Ran-
domAccess. These combine computation and communication
and can be thought of as very simple proxy applications.
Taken together these benchmarks allow for the measurement
of a variety of lower-level factors that are important for
performance, which is why we chose to use them for this
work.

C. Evaluation Methodology

At NERSC timing results from these application bench-
marks are used to compute the Sustained System Performance
(SSP) metric [17], an aggregate measure of the workload-
specific delivered performance of a computing system. The
SSP is derived from an application performance figure, Pi,
expressed in units of GFlops per second per core. Given a
system configured with N computational cores, the SSP is the
geometric mean of Pi over all M applications, multiplied by
N, which is the size of the system being considered.

SSP = N

(
M∏

i=1

Pi

)(1/M)

. (1)

The floating-point operation count used in calculating Pi

for each of the seven component applications has been pre-
determined using a hardware performance counter on a single
reference system at NERSC, the Cray XT4. The reference
counts are combined with the times from other systems to
calculate the SSP for those systems.

The SSP is evaluated at discrete points in time and also as
an integrated value to give the systems potency, meaning an
estimate of how well the system will perform the expected
work over some time period. Taken together, the NERSC

SSP benchmarks, their derived aggregate measures, and the
entire NERSC workload-driven evaluation methodology create
a strong connection between science requirements, how the
machines are used, and the tests we use.

III. RESULTS

A. HPC Challenge

The results of running HPCC v.1.4.0 on 64 cores of the four
machines in our study are shown in Table I. The DGEMM
results are as one would expect based on the properties of the
CPUs. The STREAM results show that EC2 is significantly
faster for this benchmark than Lawrencium. We believe this
is because of the particular processor distribution we received
for our EC2 nodes for this test. We had 26 AMD Opteron
270’s, 16 AMD Opteron 2218 HE’s, and 14 Intel Xeon
E5430’s, of which this measurement represents an average.
The AMD Opteron based systems are known to have better
memory performance then the Intel Harpertown systems used
in Lawrencium. Both EC2 and Lawrencium are significantly
slower than the Nehalem-based Carver system, however.

The network latency and bandwidth results clearly show the
difference between the interconnects on the tested systems.
For display we have chosen both the average ping-pong
latency and bandwidth, and the randomly-ordered ring latency
and bandwidth. The ping-pong results show the latency and
the bandwidth with no self-induced contention, while the
randomly ordered ring tests show the performance degradation
with self-contention. The uncontended latency and bandwidth
measurements of the EC2 gigabit ethernet interconnect are
more than 20 times worse than the slowest other machine.
Both EC2 and Lawrencium suffer a significant performance
degradation when self-contention is introduced. The EC2
latency is 13 times worse then Lawrencium, and more than 400
times slower then a modern system like Carver. The bandwidth
numbers show similar trends: EC2 is 12 times slower than
Lawrencium, and 30 times slower than Carver.

We now turn our attention to the complex synthetics. The
performance of these is sensitive to characteristics of both the
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Fig. 3. Correlation between the runtime of each application on EC2 and the
amount of time an application spends communicating.

processor and the network, and their performance gives us
some insight into how real applications may perform on EC2.

HPL is the high-performance version of the widely-reported
Linpack benchmark, which is used to determine the TOP500
list. It solves a dense linear system of equations and its per-
formance depends upon DGEMM and the network bandwidth
and latency. On a typical high performance computing system
today roughly 90% of the time is spent in DGEMM and the re-
sults for the three HPC systems illustrate this clearly. However,
for EC2 the less capable network clearly inhibits overall HPL
performance, by a factor of six or more. The FFTE benchmark
measures the floating point rate of execution of a double
precision complex one-dimensional discrete Fourier transform,
and the PTRANS benchmark measures the time to transpose a
large matrix. Both of these benchmarks performance depends
upon the memory and network bandwidth and therefore show
similar trends. EC2 is approximately 20 times slower than
Carver and four times slower than Lawrencium in both cases.
The RandomAccess benchmark measures the rate of random
updates of memory and its performance depends on memory
and network latency. In this case EC2 is approximately 10
times slower than Carver and three times slower than Lawren-
cium.

Overall the results of the HPCC runs indicate that the lower
performing network interconnect in EC2 has a significant
impact upon the performance of even very simple application
proxies. This is illustrated clearly by the HPL results which
are significantly worse than would be expected from simply
looking at the DGEMM performance.

B. Applications

Figure 2 shows the relative runtime of each of our test
applications relative to Carver, which is the newest, and there-
fore fastest, machine in our testbed. For these applications, at
these concurrencies, Franklin and Lawrencium are between
1.4× and 2.6× slower than Carver. For EC2 the range of
performance observed is significantly greater. In the best case,
GAMESS, EC2 is only 2.7× slower than Carver. For the

worst case, PARATEC, EC2 is more than 50× slower than
Carver. This large spread of performance simply reflects the
different demands each application places upon the network,
as in the case of the compact applications that were described
in the previous section. Qualitatively we can understand the
differences in terms of the performance characteristics of
each of the applications described in Section II-B. PARATEC
shows the worst performance on EC2, 52× slower than
Carver. It performs 3-DFFT’s, and the global (i.e., all-to-
all) data transposes within these FFT operations can incur a
large communications overhead. MILC (20×) and MAESTRO
(17×) also stress global communication, but to a lesser extent
than PARATEC. CAM (11×), IMPACT (9×) and GTC (6×)
are all characterized by large point-to-point communications,
which do not induce quite as much contention as global
communication, hence their performance is not impacted quite
as much. GAMESS (2.7×), for this benchmark problem,
places relatively little demand upon the network, and therefore
is hardly slowed down at all on EC2.

Qualitatively, it seems that those applications that perform
the most collective communication with the most messages are
those that perform the worst on EC2. To gain a more quan-
titative understanding, we perform a more detailed analysis,
which is described in the next section.

C. Performance Analysis Using IPM

To understand more deeply the reasons for the poor per-
formance of EC2 in comparison to the other platforms we
performed additional experiments using the Integrated Per-
formance Monitoring (IPM) framework [11], [23]. IPM is a
profiling tool that uses the MPI profiling interface to measure
the time taken by an application in MPI on a task-by-task
basis. This allows us to examine the relative amounts of time
taken by an application for computing and communicating,
as well as the types of MPI calls made. These measurements
will enable us to determine which particular aspects of the
EC2 hardware configuration are most inhibiting performance
on an application by application basis in a quantitative manner.
Previous measurements with IPM have shown that it has ex-
tremely low overhead [23], less that 2%, giving us confidence
that by instrumenting the applications with IPM we are not
altering their runtime characteristics.

One of the simplest metrics available from IPM is the
percentage of the runtime that the application spends commu-
nicating (time in the MPI library to be precise). Figure 3 shows
the relative runtime on EC2 compared to Lawrencium plotted
against the percentage communication for each application
as measured on Lawrencium. The overall trend is clear:
the greater the fraction of its runtime an application spends
communicating, the worse the performance is on EC2.

The principle exception to this trend is fvCAM, the perfor-
mance on EC2 is much faster than would be expected from
the simple considerations described above. Currently we do
not have a quantitative explanation for this observation, but
given the considerable variability EC2 performance we have
observed it seems most likely that this is simply a judiciously
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fast run. Furthermore the magnitude of the discrepancy is also
consistent with this hypothesis. Additional investigations are
underway.

Thus using quantitative analysis based upon instrumenting
our applications with IPM we have explained the reason that
each application is slowed down by different amounts when
running on EC2.

D. Sustained System Performance

Figure 4a shows the sustained floating point rate per core
achieved by each application on each machine. Often this
is presented as percentage of peak, but in this case the
inhomogeneous CPU environment on EC2 makes that impos-
sible to calculate. The rate achieved by the applications is
representative of their computational intensity (ratio of floating
point operations to memory operations) as well as the amount
of time they spend communicating.

In order to combine these measurements into a single metric
that represents the overall performance for this workload
we calculate the SSP for these applications on a 3200 core
machine. (N = 3200 in Equation 1.) We chose 3200 cores as
it is the size of Carver, and represents a reasonable mid-size
HPC system today. (Ideally of course our calculation would be
based upon the size of EC2 as that is what we are evaluating
here; unfortunately that is not possible.) We note that the
particular number of cores used only affects the magnitude
of the SSP, not the relative ratios between values for different
machines.

The results of the SSP calculation are shown in Figure 4b.
It shows that the sustained performance for Carver is more
than 4 TF/s or almost 7% of peak. Franklin, Lawrencium and
EC2 are 1.5, 1.2 and 0.2 TF/s respectively. (Note that this
value differs from the published one for Franklin because, as
described in Section II-B, the problem sizes in this work are
drastically reduced.) Thus for this workload in aggregate the
slowest of our HPC systems, Lawrencium, is six times faster
than EC2, and the fastest, Carver is twenty times faster.

IV. DISCUSSION

As we saw in the last section, the overall performance of
EC2, running this workload, is significantly slower then an
typical mid-size cluster like Lawrencium. Our experiments
show that this is largely because of the network interconnect
available in EC2. This is born out by the data in Section III-C,
showing that the larger percentage of time an application
spends in communication, the worse its overall EC2 perfor-
mance will be. In addition, the applications communication
pattern affects how it uses the network interconnect, and will
also affect the performance. As seen with PARATEC, all-to-
all communications performed to transpose data can severely
hamper performance.

While conducting this study, we discovered a significant
amount of variability in application performance. One of the
sources of this variability in the Amazon cloud environment
is the non-homogeneous nature of the systems allocated, as
described in Section II-A4. During our testing we saw three
different processor types: two AMD Opteron CPUs and one
Intel Xeon, with the particular distribution varying from test to
test. This heterogeneity makes benchmarking difficult, as it is
hard to compare two different runs as a completely different
set of processors may be acquired on the next test. In this
work our benchmarks are a snapshot of what the performance
was with a particular set of resources at a particular time.
We note that for application developers this inhomogeneity
causes difficulties with performance tuning and load-balancing
applications. Another source of variability is introduced by
network contention. The switching fabric is shared between
all of the EC2 users, and may be heavily contended for.

One last source of variability over which we have no control,
nor way of discovering, is if we are sharing the un-virtualized
hardware or not. For example, multiple virtual machines may
be running on the same physical machine. If one of our nodes
is sharing the hardware with another virtual machine that is
making extensive use of some hardware component, like the
network interface, our performance will suffer.

To study this variability, and understand quantitatively its
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Fig. 5. Paratec performance variability on EC2.

effect, we conducted seven runs of the PARATEC application
using different virtual cluster instances. In Figure 5a we
show the time spent in computation for each of these runs
as measured using IPM. Overall there is a 30% variability
seen in compute time which can be explained by examining
the processor distribution acquired for each run. In the first
run, which was the slowest, our virtual cluster had 48 of the
2.0GHz AMD 270 processors, and only 2 of the 2.66GHz
Intel E5430 processors. On the other hand, run seven spent
the least amount of time in computation. For that run we had
18 of the slower AMD 270’s, and 26 of the Intel E5430’s,
and 8 of the 2.66GHz AMD 2218 HE processors. As we
anticipated, computation time can vary significantly based on
the distribution of processors acquired. In Figure 5b we show
the time spent in communication for these runs. As discussed
in Section III-B, PARATEC’s communication pattern performs
particularly poorly on EC2. Communication accounts for
approximately 97% of the overall runtime, and accounts for
most of the variability in runtime. The difference between
the maximum and minimum runtime is 7,900 seconds, or
approximately 42% of the mean runtime. This clearly shows
the extreme variability in network performance within EC2.

In an attempt to mitigate the effect of the poor performance
of the EC2 network (and its variability) we also performed
experiments using fewer overall MPI tasks, for the PARATEC
and MILC applications on both EC2 and Lawrencium. The
results of these are shown in Figures 6a and 6b. The principle
observation is that even though we are now using one-half or
one-quarter as many nodes the EC2 runtime still shows sig-
nificant effects due to variability. In fact these are completely
dominant, suggesting that unless one is using a loosely coupled
application, one is better off running applications exclusively
within a single EC2 node. The Lawrencium results show the
expected strong-scaling behavior.

We don’t explicitly address cost in this work, because it is
highly dependent on the specific application and operational
requirements of a given collaboration. However there is a
direct correlation between cost and performance, and we
believe that these performance metrics will prove to be an

invaluable tool for computing the true cost of running on the
cloud for a given scientific group. This cost will depend on
several factors including the size of the application, its need
for concurrency, its IO requirements, its fault-tolerance and
the general software integration and porting challenges. These
are highly site and application dependent.

We also do not address I/O performance in this paper. While
we recognize that I/O performance is critical to many HPC
applications, we chose to focus this study on computational
performance. We expect that future work will examine I/O
and Wide Area Network (WAN) performance from a scientific
application perspective.

One major lesson of this study was that the mean time
between failures (MTBF) of individual nodes in a virtual
cluster is significantly higher then in a traditional HPC envi-
ronment. Traditional MPI based applications are intolerant of
node failures and other transient errors. Our experience with
the Amazon Web Services environment is that a variety of
transient failures can occur, including an inability to access the
user-data passed in during image startup, failure to properly
configure the network, failure to boot properly, and other per-
formance perturbations, including intermittent virtual machine
hangs. While none of these errors occurred frequently, they do
in aggregate happen often enough that it becomes a significant
barrier to running MPI applications. Approximately one in ten
runs would need to be restarted do to some failure.

A common failure that must be handled by the virtual cluster
software is resource unavailability. In general, we found that
the software creating the virtual cluster cannot assume that it
will always acquire all of the requested resources. Allocating
128 or more cores at once is not always practical, and results
in indefinite hangs and costly idling of resources if the request
cannot be fulfilled. For this reason, we confined our tests to
running on no more than 256 cores. Scheduling resources for
larger core counts appears to be impractical at this time with-
out moving to higher-cost reservation services, thus severely
limiting the ability to run many of the applications common
at supercomputing centers.
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V. RELATED WORK

A number of different groups have conducted feasibility
studies of running their scientific applications in the Amazon
cloud. In addition, previous work has examined the perfor-
mance of individual Amazon AWS components, e.g., the
simple storage service (S3) [24].

Hazelhurst examines the performance of the bioinformatics
application WCD [25]. The performance and storage costs
of running the Montage workflow on EC2 are detailed by
Deelman et. al. [26]. The High-Energy and Nulclear Physics
(HENP) STAR experiment has examined the costs and chal-
lenges associated with running their analysis application on the
EC2 cloud [15], [27], [28]. In previous work we examined the
usefulness of cloud computing for e-Science applications [29],
[30].

Standard benchmarks have also been evaluated on Amazon
EC2. Napper et. al. examine the performance of the Linpack
benchmarks on different EC2 instance types [31]. The NAS
benchmarks have been run by Evangelinos et. al. [32] and
Masud [33]. Osterman et. al. ran a variety of microbenchmarks
and kernels [34].

This work is unique in examining the performance of a
set of applications that represent the typical workload run
at a major supercomputing center. The applications chosen
represent both the range of science done and the algorithms
typical of supercomputing codes. More importantly, by an-
alyzing the running code using IPM we are able to profile
the underlying characteristics of the application, and can
quantitatively identify the major performance bottlenecks and
resource constraints with respect to the EC2 cloud.

VI. CONCLUSIONS

While cloud computing has proven itself useful for a wide
range of e-Science applications, its utility for more tightly-
coupled HPC applications has not been proven. In this paper
we have quantitatively examined the performance of a set of
benchmarks designed to represent a typical HPC workload
run on Amazon EC2. Our data clearly shows a strong corre-
lation between the percentage of time an application spends

communicating, and its overall performance on EC2. The
more communication, the worse the performance becomes.
We were also able to see that the communication pattern
of the application can have a significant impact on perfor-
mance. Applications, like PARATEC, with significant global
communication perform relatively worse then those with less
global communication. Finally we learned that the amount of
variability in EC2 performance can be significant. Variability is
introduced by the shared nature of the virtualized environment,
by the network, and by differences in the underlying non-
virtualized hardware.
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